ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling quasar accretion disc temperature profiles

151   0   0.0 ( 0 )
 نشر من قبل Patrick B. Hall
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microlensing observations indicate that quasar accretion discs have half-light radii larger than expected from standard theoretical predictions based on quasar fluxes or black hole masses. Blackburne and colleagues have also found a very weak wavelength dependence of these half-light radii. We consider disc temperature profile models that might match these observations. Nixon and colleagues have suggested that misaligned accretion discs around spinning black holes will be disrupted at radii small enough for the Lense-Thirring torque to overcome the discs viscous torque. Gas in precessing annuli torn off a disc will spread radially and intersect with the remaining disc, heating the disc at potentially large radii. However, if the intersection occurs at an angle of more than a degree or so, highly supersonic collisions will shock-heat the gas to a Compton temperature of T~10^7 K, and the spectral energy distributions (SEDs) of discs with such shock-heated regions are poor fits to observations of quasar SEDs. Torn discs where heating occurs in intermittent weak shocks that occur whenever the intersection angle reaches a tenth of a degree pose less of a conflict with observations, but do not have significantly larger half-light radii than standard discs. We also study two phenomenological disc temperature profile models. We find that discs with a temperature spike at relatively large radii and lowered temperatures at radii inside the spike yield improved and acceptable fits to microlensing sizes in most cases. Such temperature profiles could in principle occur in sub-Keplerian discs partially supported by magnetic pressure. However, such discs overpredict the fluxes from quasars studied with microlensing except in the limit of negligible continuum emission from radii inside the temperature spike.



قيم البحث

اقرأ أيضاً

Microlensing perturbations to the flux ratios of gravitationally lensed quasar images can vary with wavelength because of the chromatic dependence of the accretion disks apparent size. Multiwavelength observations of microlensed quasars can thus cons train the temperature profiles of their accretion disks, a fundamental test of an important astrophysical process which is not currently possible using any other method. We present single-epoch broadband flux ratios for 12 quadruply lensed quasars in eight bands ranging from 0.36 to 2.2 microns, as well as Chandra 0.5--8 keV flux ratios for five of them. We combine the optical/IR and X-ray ratios, together with X-ray ratios from the literature, using a Bayesian approach to constrain the half-light radii of the quasars in each filter. Comparing the overall disk sizes and wavelength slopes to those predicted by the standard thin accretion disk model, we find that on average the disks are larger than predicted by nearly an order of magnitude, with sizes that grow with wavelength with an average slope of ~0.2 rather than the slope of 4/3 predicted by the standard thin disk theory. Though the error bars on the slope are large for individual quasars, the large sample size lends weight to the overall result. Our results present severe difficulties for a standard thin accretion disk as the main source of UV/optical radiation from quasars.
We compare the microlensing-based continuum emission region size measurements in a sample of 15 gravitationally lensed quasars with estimates of luminosity-based thin disk sizes to constrain the temperature profile of the quasar continuum accretion r egion. If we adopt the standard thin disk model, we find a significant discrepancy between sizes estimated using the luminosity and those measured by microlensing of $log(r_{L}/r_{mu})=-0.57pm0.08,text{dex}$. If quasar continuum sources are simple, optically thick accretion disks with a generalized temperature profile $T(r) propto r^{-beta}$, the discrepancy between the microlensing measurements and the luminosity-based size estimates can be resolved by a temperature profile slope $0.37 < beta < 0.56$ at $1,sigma$ confidence. This is shallower than the standard thin disk model ($beta=0.75$) at $3,sigma$ significance. We consider alternate accretion disk models that could produce such a temperature profile and reproduce the empirical continuum size scaling with black hole mass, including disk winds or disks with non-blackbody atmospheres.
The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards t o the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated $alpha$-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag $t_{lag} propto f^{-0.54}$, for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the $alpha$-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.
91 - P.T. OBrien 2000
We present XMM-Newton observations of the bright quasar PKS0558-504. The 0.2-10 keV spectrum is dominated by a large, variable soft X-ray excess. The fastest flux variations imply accretion onto a Kerr black hole. The XMM-Newton data suggest the pres ence of a `big blue bump in PKS0558-504 extending from the optical band to ~3 keV. The soft X-ray spectrum shows no evidence for significant absorption or emission-line features. The most likely explanation for the hot big blue bump is Comptonization by the multi-temperature corona of a thermal accretion disc running at a high accretion rate.
78 - Mouyuan Sun 2020
The rest-frame UV/optical variability of the quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 is used to test the Corona-Heated Accretion-disk Reprocessing (CHAR) model of Sun et al. 2020. We adopt our CHAR model and the observed black-hole m asses ($M_{mathrm{BH}}$) and luminosities ($L$) to generate mock light curves that share the same measurement noise and sampling as the real observations. Without any fine-tuning, our CHAR model can satisfactorily reproduce the observed ensemble structure functions for different $M_{mathrm{BH}}$, $L$, and rest-frame wavelengths. Our analyses reveal that a luminosity-dependent bolometric correction is disfavored over the constant bolometric correction for UV/optical luminosities. Our work demonstrates the possibility of extracting quasar properties (e.g., the bolometric correction or the dimensionless viscosity parameter) by comparing the physical CHAR model with quasar light curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا