ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Quasar UV/Optical Variability with the Corona-heated Accretion-disk Reprocessing (CHAR) Model

79   0   0.0 ( 0 )
 نشر من قبل Mouyuan Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mouyuan Sun




اسأل ChatGPT حول البحث

The rest-frame UV/optical variability of the quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 is used to test the Corona-Heated Accretion-disk Reprocessing (CHAR) model of Sun et al. 2020. We adopt our CHAR model and the observed black-hole masses ($M_{mathrm{BH}}$) and luminosities ($L$) to generate mock light curves that share the same measurement noise and sampling as the real observations. Without any fine-tuning, our CHAR model can satisfactorily reproduce the observed ensemble structure functions for different $M_{mathrm{BH}}$, $L$, and rest-frame wavelengths. Our analyses reveal that a luminosity-dependent bolometric correction is disfavored over the constant bolometric correction for UV/optical luminosities. Our work demonstrates the possibility of extracting quasar properties (e.g., the bolometric correction or the dimensionless viscosity parameter) by comparing the physical CHAR model with quasar light curves.

قيم البحث

اقرأ أيضاً

113 - Mouyuan Sun 2020
Active galactic nuclei (AGNs) have long been observed to twinkle (i.e., their brightness varies with time) on timescales from days to years in the UV/optical bands. Such AGN UV/optical variability is essential for probing the physics of supermassive black holes (SMBHs), the accretion disk, and the broad-line region. Here we show that the temperature fluctuations of an AGN accretion disk, which is magnetically coupled with the corona, can account for observed high-quality AGN optical light curves. We calculate the temperature fluctuations by considering the gas physics of the accreted matter near the SMBH. We find that the resulting simulated AGN UV/optical light curves share the same statistical properties as the observed ones as long as the dimensionless viscosity parameter $alpha$, which is widely believed to be controlled by magnetohydrodynamic (MHD) turbulence in the accretion disk, is about $0.01$---$0.2$. Moreover, our model can simultaneously explain the larger-than-expected accretion disk sizes and the dependence of UV/optical variability upon wavelength for NGC 5548. Our model also has the potential to explain some other observational facts of AGN UV/optical variability, including the timescale-dependent bluer-when-brighter color variability and the dependence of UV/optical variability on AGN luminosity and black hole mass. Our results also demonstrate a promising way to infer the black-hole mass, the accretion rate, and the radiative efficiency, thereby facilitating understanding of the gas physics and MHD turbulence near the SMBH and its cosmic mass growth history by fitting the AGN UV/optical light curves in the era of time-domain astronomy.
We compare the microlensing-based continuum emission region size measurements in a sample of 15 gravitationally lensed quasars with estimates of luminosity-based thin disk sizes to constrain the temperature profile of the quasar continuum accretion r egion. If we adopt the standard thin disk model, we find a significant discrepancy between sizes estimated using the luminosity and those measured by microlensing of $log(r_{L}/r_{mu})=-0.57pm0.08,text{dex}$. If quasar continuum sources are simple, optically thick accretion disks with a generalized temperature profile $T(r) propto r^{-beta}$, the discrepancy between the microlensing measurements and the luminosity-based size estimates can be resolved by a temperature profile slope $0.37 < beta < 0.56$ at $1,sigma$ confidence. This is shallower than the standard thin disk model ($beta=0.75$) at $3,sigma$ significance. We consider alternate accretion disk models that could produce such a temperature profile and reproduce the empirical continuum size scaling with black hole mass, including disk winds or disks with non-blackbody atmospheres.
Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of t he largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
A long-standing question in active galactic nucleus (AGN) research is how the corona is heated up to produce X-ray radiation much stronger than that arising from the viscous heating within the corona. In this paper, we carry out detailed investigatio ns of magnetic-reconnection heating to the corona, specifically, studying how the disc and corona are self-consistently coupled with the magnetic field, and how the emergent spectra depend on the fundamental parameters of AGN. It is shown that diverse spectral shapes and luminosities over a broad bandpass from optical to X-ray can be produced from the coupled disc and corona within a limited range of the black hole mass, accretion rate and magnetic field strength. The relative strength of X-ray emission with respect to optical/ultraviolet (UV) depends on the strength of the magnetic field in the disc, which, together with accretion rate, determines the fraction of accretion energy transported and released in the corona. This refined disc-corona model is then applied to reproduce the broad-band spectral energy distributions (SEDs) of a sample of 20 bright local AGNs observed simultaneously in X-ray and optical/UV. We find that, in general, the overall observed broad-band SEDs can be reasonably reproduced, except for rather hard X-ray spectral shapes in some objects. The radiation pressure-dominant region, as previously predicted for the standard accretion disc in AGN, disappears for strong X-ray sources, revealing that AGN accretion discs are indeed commonly stable as observed. Our study suggests the disc-corona coupling model involving magnetic fields to be a promising approach for understanding the broad-band spectra of bright AGNs.
We study power density spectra (PDS) of X-ray flux variability in binary systems where the accretion flow is truncated by the magnetosphere. PDS of accreting X-ray pulsars where the neutron star is close to the corotation with the accretion disk at t he magnetospheric boundary, have a distinct break/cutoff at the neutron star spin frequency. This break can naturally be explained in the perturbation propagation model, which assumes that at any given radius in the accretion disk stochastic perturbations are introduced to the flow with frequencies characteristic for this radius. These perturbations are then advected to the region of main energy release leading to a self-similar variability of X-ray flux P~f^{-1...-1.5}. The break in the PDS is then a natural manifestation of the transition from the disk to magnetospheric flow at the frequency characteristic for the accretion disk truncation radius (magnetospheric radius). The proximity of the PDS break frequency to the spin frequency in corotating pulsars strongly suggests that the typical variability time scale in accretion disks is close to the Keplerian one. In transient accreting X-ray pulsars characterized by large variations of the mass accretion rate during outbursts, the PDS break frequency follows the variations of the X-ray flux, reflecting the change of the magnetosphere size with the accretion rate. Above the break frequency the PDS steepens to ~f^{-2} law which holds over a broad frequency range. These results suggest that strong f^{-1...-1.5} aperiodic variability which is ubiquitous in accretion disks is not characteristic for magnetospheric flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا