ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Shooter spectroscopy of young stellar objects III. Photospheric and chromospheric properties of Class III objects

116   0   0.0 ( 0 )
 نشر من قبل Beate Stelzer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.Stelzer




اسأل ChatGPT حول البحث

We analyzed X-Shooter/VLT spectra of 24 ClassIII sources from three nearby star-forming regions (sigmaOrionis, LupusIII, and TWHya). We determined the effective temperature, surface gravity, rotational velocity, and radial velocity by comparing the observed spectra with synthetic BT-Settl model spectra. We investigated in detail the emission lines emerging from the stellar chromospheres and combined these data with archival X-ray data to allow for a comparison between chromospheric and coronal emissions. Both X-ray and Halpha luminosity as measured in terms of the bolometric luminosity are independent of the effective temperature for early-M stars but decline toward the end of the spectral M sequence. For the saturated early-M stars the average emission level is almost one dex higher for X-rays than for Halpha: log(L_x/L_bol) = -2.85 +- 0.36 vs. log(L_Halpha/L_bol) = -3.72 +- 0.21. When all chromospheric emission lines (including the Balmer series up to H11, CaII HK, the CaII infrared triplet, and several HeI lines) are summed up the coronal flux still dominates that of the chromosphere, typically by a factor 2-5. Flux-flux relations between activity diagnostics that probe different atmospheric layers (from the lower chromosphere to the corona) separate our sample of active pre-main sequence stars from the bulk of field M dwarfs studied in the literature. Flux ratios between individual optical emission lines show a smooth dependence on the effective temperature. The Balmer decrements can roughly be reproduced by an NLTE radiative transfer model devised for another young star of similar age. Future, more complete chromospheric model grids can be tested against this data set.



قيم البحث

اقرأ أيضاً

We present the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograp h. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class~II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, Lstar, with an overall slope of ~1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below Lstar~0.1Lsun, where Lacc is always lower than 0.01Lstar. We argue that the Lacc-Lstar slope is not due to observational biases, but is a true property of the Lupus YSOs. The logMacc-logMstar correlation shows a statistically significant evidence of a break, with a steeper relation for Mstar<0.2Msun and a flatter slope for higher masses. The bimodality of the Macc-Mstar relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo evaporation and planet formation during the YSOs lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. We also refined the empirical Lacc vs. Lline relationships.
131 - C.F. Manara 2013
Context. The lack of knowledge of photospheric parameters and the level of chromospheric activity in young low-mass pre-main sequence stars introduces uncertainties when measuring mass accretion rates in accreting (Class II) Young Stellar Objects. A detailed investigation of the effect of chromospheric emission on the estimates of mass accretion rate in young low-mass stars is still missing. This can be undertaken using samples of young diskless (Class III) K and M-type stars. Aims. Our goal is to measure the chromospheric activity of Class III pre main sequence stars to determine its effect on the estimates of accretion luminosity (Lacc) and mass accretion rate (Macc) in young stellar objects with disks. Methods. Using VLT/X-Shooter spectra we have analyzed a sample of 24 non-accreting young stellar objects of spectral type between K5 and M9.5. We identify the main emission lines normally used as tracers of accretion in Class II objects, and we determine their fluxes in order to estimate the contribution of the chromospheric activity to the line luminosity. Results. We have used the relationships between line luminosity and accretion luminosity derived in the literature for Class II objects to evaluate the impact of chromospheric activity on the accretion rate measurements. We find that the typical chromospheric activity would bias the derived accretion luminosity by Lacc,noise< 10-3Lsun, with a strong dependence with the Teff of the objects. The noise on Macc depends on stellar mass and age, and the typical values of log(Macc,noise) range between -9.2 to -11.6Msun/yr. Conclusions. Values of Lacc< 10-3Lsun obtained in accreting low-mass pre main sequence stars through line luminosity should be treated with caution as the line emission may be dominated by the contribution of chromospheric activity.
With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: to derive the Li abundance for ~90% of known cla ss II stars in the Lupus I, II, III, IV clouds; to perform chemical tagging of a region where few Fe abundance measurements have been obtained in the past, and no determination of the Ba content has been done up to now. We also investigated possible Ba enhancement, as this element has become increasingly interesting in the last years following the evidence of Ba over-abundance in young clusters, the origin of which is still unknown. Using X-shooter@VLT, we analyzed the spectra of 89 cluster members, both class II and III stars. We measured the strength of the Li line and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also measured the Fe and Ba abundances using the spectral synthesis and the code MOOG. The veiling contribution was taken into account for all three elements. We find a dispersion in the strength of the Li line at low Teff and identify three targets with severe Li depletion. The nuclear age inferred for these highly Li-depleted stars is around 15 Myr, which exceeds the isochronal one. As in other star-forming regions, no metal-rich members are found in Lupus, giving support to a recent hypothesis that the Fe abundance distribution of most of the nearby young regions could be the result of a common and widespread star formation episode involving the Galactic thin disk. We find that Ba is over-abundant by ~0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this Ba abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar parameters, stellar activity, and accretion.
The process of massive star ($Mgeq8~M_odot$) formation is still poorly understood. Observations of massive young stellar objects (MYSOs) are challenging due to their rarity, short formation timescale, large distances, and high circumstellar extinctio n. Here, we present the results of a spectroscopic analysis of a population of MYSOs in the Large Magellanic Cloud (LMC). We took advantage of the spectral resolution and wavelength coverage of X-shooter (300-2500 nm), mounted on the European Southern Observatory Very Large Telescope, to detect characteristic spectral features in a dozen MYSO candidates near 30 Doradus, the largest starburst region in the Local Group hosting the most massive stars known. The X-shooter spectra are strongly contaminated by nebular emission. We used a scaling method to subtract the nebular contamination from our objects. We detect H$alpha,beta$, [O I] 630.0 nm, Ca II infrared triplet, [Fe II] 1643.5 nm, fluorescent Fe II 1687.8 nm, H$_2$ 2121.8 nm, Br$gamma$, and CO bandhead emission in the spectra of multiple candidates. This leads to the spectroscopic confirmation of 10 candidates as bona fide MYSOs. We compare our observations with photometric observations from the literature and find all MYSOs to have a strong near-infrared excess. We compute lower limits to the brightness and luminosity of the MYSO candidates, confirming the near-infrared excess and the massive nature of the objects. No clear correlation is seen between the Br$gamma$ luminosity and metallicity. Combining our sample with other LMC samples results in a combined detection rate of disk features such as fluorescent Fe II and CO bandheads which is consistent with the Galactic rate (40%). Most of our MYSOs show outflow features.
We present high-quality, medium resolution X-shooter/VLT spectra in the range 300-2500 nm for a sample of 12 very low-mass stars in the sigma Orionis cluster. The sample includes stars with masses ranging from 0.08 to 0.3 M$_odot$. The aim of this fi rst paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass, young stars. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10$^{-9}$ M$_{odot}$ yr$^{-1}$ down to 5$times10^{-11}$ M$_{odot}$ yr$^{-1}$, allowing us to investigate the behavior of the accretion-driven emission lines in very-low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines, from the UV to the near-IR, obtained simultaneously. Most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We confirm the validity of the correlations between accretion luminosities and line luminosities given in the literature, with the possible exception of Halpha. When looking at individual objects, we find that the Hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of accretion luminosities, often in better agreement than the uncertainties introduced by the adopted correlations. The average accretion luminosity derived from several Hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of non-simultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا