ﻻ يوجد ملخص باللغة العربية
Goldman, Joichi, and White proved a beautiful theorem showing that the falling factorial generating function for the rook numbers of a Ferrers board factors over the integers. Briggs and Remmel studied an analogue of rook placements where rows are replaced by sets of $m$ rows called levels. They proved a version of the factorization theorem in that setting, but only for certain Ferrers boards. We generalize this result to any Ferrers board as well as giving a p,q-analogue. We also consider a dual situation involving weighted file placements which permit more than one rook in the same row. In both settings, we discuss properties of the resulting equivalence classes such as the number of elements in a class. In addition, we prove analogues of a theorem of Foata and Schutzenberger giving a distinguished representative in each class as well as make connections with the q,t-Catalan numbers. We end with some open questions raised by this work.
In this paper we answer a question posed by R. Stanley in his collection of Bijection Proof Problems (Problem 240). We present a bijective proof for the enumeration of walks of length $k$ a chess rook can move along on an $mtimes n$ board starting and ending on the same square.
The rook monoid $R_n$ is the finite monoid whose elements are the 0-1 matrices with at most one nonzero entry in each row and column. The group of invertible elements of $R_n$ is isomorphic to the symmetric group $S_n$. The natural extension to $R_n$
The emph{simplicial rook graph} SR(d,n) is the graph whose vertices are the lattice points in the $n$th dilate of the standard simplex in $mathbb{R}^d$, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency
Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their `concavity index, $m$. Such polygons are called emph{$m$-convex} polygons and are characterised by having up to $
A binary poset code of codimension M (of cardinality 2^{N-M}, where N is the code length) can correct maximum M errors. All possible poset metrics that allow codes of codimension M to be M-, (M-1)- or (M-2)-perfect are described. Some general conditi