ﻻ يوجد ملخص باللغة العربية
We estimate the turbulent ambipolar diffusion length scale and magnetic field strength in the massive dense cores CygX-N03 and CygX-N53, located in the Cygnus-X star-forming region. The method we use requires comparing the velocity dispersions in the spectral line profiles of the coexistent ion and neutral pair H13CN and H13CO+ (J=1-0) at different length scales. We fit Kolmogorov-type power laws to the lower envelopes of the velocity dispersion spectra of the two species. This allows to calculate the turbulent ambipolar diffusion scale, which in turn determines the plane-of-the-sky magnetic field strength. We find turbulent ambipolar diffusion length scales of 3.8+-0.1 mpc and 21.2+-0.4 mpc, and magnetic field strengths of 0.33 mG and 0.76 mG for CygX-N03 and CygX-N53, respectively. These magnetic field values have uncertainties of a factor of a few. Despite a lower signal-to-noise ratio of the data in CygX-N53 than in CygX-N03, and the caveat that its stronger field might stem in part from projection effects, the difference in field strengths suggests different fragmentation activities of the two cores. Even though the quality of our data, obtained with the IRAM Plateau de Bure Interferometer (PdBI), is somewhat inferior to previous single-dish data, we demonstrate that this method is suited also for observations at high spatial resolution.
Ambipolar diffusion likely plays a pivotal role in the formation and evolution of dense cores in weakly-ionized molecular clouds. Linear analyses show that the evolutionary times and fragmentation scales are significantly greater than the hydrodynami
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we
Simulations generally show that non-self-gravitating clouds have a lognormal column density ($Sigma$) probability distribution function (PDF), while self-gravitating clouds with active star formation develop a distinct power-law tail at high column d
Clustering and dynamics of nano-sized particles (nano dust) is investigated using high-resolution ($1024^3$) simulations of compressible isothermal hydrodynamic turbulence, intended to mimic the conditions inside cold molecular clouds in the interste
The filamentary structure of the molecular interstellar medium and the potential link of this morphology to star formation have been brought into focus recently by high resolution observational surveys. An especially puzzling matter is that local int