ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Magnetic Fields and Ambipolar Diffusion on the Column Density Probability Distribution Function in Molecular Clouds

123   0   0.0 ( 0 )
 نشر من قبل Sayantan Auddy
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulations generally show that non-self-gravitating clouds have a lognormal column density ($Sigma$) probability distribution function (PDF), while self-gravitating clouds with active star formation develop a distinct power-law tail at high column density. Although the growth of the power law can be attributed to gravitational contraction leading to the formation of condensed cores, it is often debated if an observed lognormal shape is a direct consequence of supersonic turbulence alone, or even if it is really observed in molecular clouds. In this paper we run three-dimensional magnetohydrodynamic simulations including ambipolar diffusion with different initial conditions to see the effect of strong magnetic fields and nonlinear initial velocity perturbations on the evolution of the column density PDFs. Our simulations show that column density PDFs of clouds with supercritical mass-to-flux ratio, with either linear perturbations or nonlinear turbulence, quickly develop a power-law tail such that $dN/d log Sigma propto Sigma^{-alpha}$ with index $alpha simeq 2$. Interestingly, clouds with subcritical mass-to-flux ratio also proceed directly to a power-law PDF, but with a much steeper index $alpha simeq 4$. This is a result of gravitationally-driven ambipolar diffusion. However, for nonlinear perturbations with a turbulent spectrum ($v_{k}^{2} propto k^{-4}$), the column density PDFs of subcritical clouds do retain a lognormal shape for a major part of the cloud evolution, and only develop a distinct power-law tail with index $alpha simeq 2$ at greater column density when supercritical pockets are formed.

قيم البحث

اقرأ أيضاً

Both observational and theoretical research over the past decade has demonstrated that the probability distribution function (PDF) of the gas density in turbulent molecular clouds is a key ingredient for understanding star formation. It has recently been argued that the PDF of molecular clouds is a pure power-law distribution. It has been claimed that the log-normal part is ruled out when using only the part of the PDF up/down to which it is complete, that is where the column density contours are still closed. By using the results from high-resolution magnetohydrodynamical simulations of molecular cloud formation and evolution, we find that the column density PDF is indeed composed of a log-normal and, if including self-gravity, a power-law part. We show that insufficient sampling of a molecular cloud results in closed contours that cut off the log-normal part. In contrast, systematically increasing the field of view and sampling the entire cloud yields a completeness limit at the lower column densities, which also recovers the log-normal part. This demonstrates that the field of view must be sufficiently large for the PDF to be complete down to its log-normal part, which has important implications for predictions of star-formation activity based on the PDF.
We characterize the column density probability distributions functions (PDFs) of the atomic hydrogen gas, HI, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic HI Survey to derive column density maps and PDFs. We find that the peaks of the HI PDFs occur at column densities ranging from ~1-2$times 10^{21}$ cm$^2$ (equivalently, ~0.5-1 mag). The PDFs are uniformly narrow, with a mean dispersion of $sigma_{HI}approx 10^{20}$ cm$^2$ (~0.1 mag). We also investigate the HI-to-H$_2$ transition towards the cloud complexes and estimate HI surface densities ranging from 7-16 $M_odot$ pc$^{-2}$ at the transition. We propose that the HI PDF is a fitting tool for identifying the HI-to-H$_2$ transition column in Galactic MCs.
We investigate the formation and evolution of giant molecular clouds (GMCs) by the collision of convergent warm neutral medium (WNM) streams in the interstellar medium, in the presence of magnetic fields and ambipolar diffusion (AD), focusing on the evolution of the star formation rate (SFR) and efficiency (SFE), as well as of the mass-to-magnetic-flux ratio (M2FR) in the forming clouds. We find that: 1) Clouds formed by supercritical inflow streams proceed directly to collapse, while clouds formed by subcritical streams first contract and then re-expand, oscillating on the scale of tens of Myr. 2) Our suite of simulations with initial magnetic field strength of 2, 3, and 4 $muG$ show that only supercritical or marginal critical streams lead to reasonable star forming rates. 3) The GMCs M2FR is a generally increasing function of time, whose growth rate depends on the details of how mass is added to the GMC from the WNM. 4) The M2FR is a highly fluctuating function of position in the clouds. 5) In our simulations, the SFE approaches stationarity, because mass is added to the GMC at a similar rate at which it converts mass to stars. In such an approximately stationary regime, the SFE provides a proxy of the supercritical mass fraction in the cloud. 6) We observe the occurrence of buoyancy of the low-M2FR regions within the gravitationally-contracting GMCs, so that the latter naturally segregate into a high-density, high-M2FR core and a low-density, low-M2FR envelope, without the intervention of AD. (Abridged)
The filamentary structure of the molecular interstellar medium and the potential link of this morphology to star formation have been brought into focus recently by high resolution observational surveys. An especially puzzling matter is that local int erstellar filaments appear to have the same thickness, independent of their column density. This requires a theoretical understanding of their formation process and the physics that governs their evolution. In this work we explore a scenario in which filaments are dissipative structures of the large-scale interstellar turbulence cascade and ion-neutral friction (also called ambipolar diffusion) is affecting their sizes by preventing small-scale compressions. We employ high-resolution, 3D MHD simulations, performed with the grid code RAMSES, to investigate non-ideal MHD turbulence as a filament formation mechanism. We focus the analysis on the mass and thickness distributions of the resulting filamentary structures. Simulations of both driven and decaying MHD turbulence show that the morphologies of the density and the magnetic field are different when ambipolar diffusion is included in the models. In particular, the densest structures are broader and more massive as an effect of ion-neutral friction and the power spectra of both the velocity and the density steepen at a smaller wavenumber. The comparison between ideal and non-ideal MHD simulations shows that ambipolar diffusion causes a shift of the filament thickness distribution towards higher values. However, none of the distributions exhibit the pronounced peak found in the observed local filaments. Limitations in dynamical range and the absence of self-gravity in these numerical experiments do not allow us to conclude at this time whether this is due to the different filament selection or due to the physics inherent of the filament formation.
We present a far-IR survey of the entire Mon R2 GMC with $Herschel-SPIRE$ cross-calibrated with $Planck-HFI$ data. We fit the SEDs of each pixel with a greybody function and an optimal beta value of 1.8. We find that mid-range column densities obtain ed from far-IR dust emission and near-IR extinction are consistent. For the entire GMC, we find that the column density histogram, or N-PDF, is lognormal below $sim$10$^{21}$ cm$^{-2}$. Above this value, the distribution takes a power law form with an index of -2.16. We analyze the gas geometry, N-PDF shape, and YSO content of a selection of subregions in the cloud. We find no regions with pure lognormal N-PDFs. The regions with a combination of lognormal and one power law N-PDF have a YSO cluster and a corresponding centrally concentrated gas clump. The regions with a combination of lognormal and two power law N-PDF have significant numbers of typically younger YSOs but no prominent YSO cluster. These regions are composed of an aggregate of closely spaced gas filaments with no concentrated dense gas clump. We find that for our fixed scale regions, the YSO count roughly correlates with the N-PDF power law index. The correlation appears steeper for single power law regions relative to two power law regions with a high column density cut-off, as a greater dense gas mass fraction is achieved in the former. A stronger correlation is found between embedded YSO count and the dense gas mass among our regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا