ترغب بنشر مسار تعليمي؟ اضغط هنا

The parsec-scale jet of PKS 1749+096

112   0   0.0 ( 0 )
 نشر من قبل Rusen Lu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PKS 1749+096 is a BL Lac object showing weak extended jet emission to the northeast of the compact VLBI core on parsec scales. We aim at better understanding the jet kinematics and variability of this source and finding clues that may applicable to other BL Lac objects. The jet was studied with multi-epoch multi-frequency high-resolution VLBI observations. The jet is characterized by a one-sided curved morphology at all epochs and all frequencies. The VLBI core, located at the southern end of the jet, was identified based on its spectral properties. The equipartition magnetic field of the core was investigated, through which we derived a Doppler factor of 5, largely consistent with that derived from kinematics (component C5). The study of the detailed jet kinematics at 22 and 15 GHz, spanning a period of more than 10 years, indicates the possible existence of a bimodal distribution of the jet apparent speed. Ballistic and non-ballistic components are found to coexist in the jet. Superluminal motions in the range of 5-21 c were measured in 11 distinct components. We estimated the physical jet parameters with the minimum Lorentz factor of 10.2 and Doppler factors in the range of 10.2-20.4 (component C5). The coincidence in time of the components ejection and flares supports the idea that, at least in PKS 1749+096, ejection of new jet components is connected with major outbursts in flux density. For the best-traced component (C5) we found that the flux density decays rapidly as it travels downstream the jet, accompanied by a steepening of its spectra, which argues in favor of a contribution of inverse Compton cooling. These properties make PKS 1749+096 a suitable target for an intensive monitoring to decipher the variability phenomenon of BL Lac objects.



قيم البحث

اقرأ أيضاً

We report on the variation in the optical polarization of the blazar PKS 1749+096 observed in 2008--2015. The degree of polarization (PD) tends to increase in short flares having a time-scale of a few days. The object favors a polarization angle (PA) of $40^circ$--$50^circ$ at the flare maxima, which is close to the position angle of the jet ($20^circ$--$40^circ$). Three clear polarization rotations were detected in the negative PA direction associated with flares. In addition, a rapid and large decrease in the PA was observed in the other two flares, while another two flares showed no large PA variation. The light curve maxima of the flares possibly tend to lag behind the PD maxima and color-index minima. The PA became $-50^circ$ to $-20^circ$ in the decay phase of active states, which is almost perpendicular to the jet position angle. We propose a scenario to explain these observational features, where transverse shocks propagate along curved trajectories. The favored PA at the flare maxima suggests that the observed variations were governed by the variations in the Doppler factor, $delta$. Based on this scenario, the minimum viewing angle of the source, $theta_mathrm{min}=4.8^circ$--$6.6^circ$, and the location of the source, $Delta rgtrsim 0.1$pc, from the central black hole were estimated. In addition, the acceleration of electrons by the shock and synchrotron cooling would have a time-scale similar to that of the change in $delta$. The combined effect of the variation in $delta$ and acceleration/cooling of electrons is probably responsible for the observed diversity of the polarization variations in the flares.
113 - M. L. Lister 2013
We describe the parsec-scale kinematics of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGN from the MOJAVE and 2 cm Survey programs. Nearly all of th e 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10 deg to 150 deg on the sky, corresponding to intrinsic variations of ~0.5 deg to ~2 deg. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. (abridged)
167 - M. L. Lister , M. Aller , H. Aller 2011
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
122 - T. An , B.-Q. Lao , W. Zhao 2016
The quasar 3C~286 is one of two compact steep spectrum sources detected by the {it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the $gamma$-ray emission in 3C~286. The Very Long Baseline Interferometry (VLBI) images at various frequencies reveal a one-sided core--jet structure extending to the southwest at a projected distance of $sim$1 kpc. The component at the jet base showing an inverted spectrum is identified as the core, with a mean brightness temperature of $2.8times 10^{9}$~K. The jet bends at about 600 pc (in projection) away from the core, from a position angle of $-135^circ$ to $-115^circ$. Based on the available VLBI data, we inferred the proper motion speed of the inner jet as $0.013 pm 0.011$ mas yr$^{-1}$ ($beta_{rm app} = 0.6 pm 0.5$), corresponding to a jet speed of about $0.5,c$ at an inclination angle of $48^circ$ between the jet and the line of sight of the observer. The brightness temperature, jet speed and Lorentz factor are much lower than those of $gamma$-ray-emitting blazars, implying that the pc-scale jet in 3C~286 is mildly relativistic. Unlike blazars in which $gamma$-ray emission is in general thought to originate from the beamed innermost jet, the location and mechanism of $gamma$-ray emission in 3C~286 may be different as indicated by the current radio data. Multi-band spectrum fitting may offer a complementary diagnostic clue of the $gamma$-ray production mechanism in this source.
142 - Y. Y. Kovalev 2009
The high redshift GPS quasar PKS 0858-279 exhibits the following properties which make the source unusual. Our RATAN-600 monitoring of 1-22 GHz spectrum has detected broad-band radio variability with high amplitude and relatively short time scale. In the same time, the milliarcsecond scale structure observed in a snapshot VLBA survey turned out to be very resolved which is not expected from the fast flux density variations. We performed 1.4-22 GHz VLBA observations of this quasar in 2005-2007. It has revealed a core-jet morphology. A high Doppler factor delta is suggested for the jet, its nature is discussed in this report on the basis of the multi-frequency VLBA and RATAN data collected. Synchrotron self-absorption was confirmed to be dominating at low frequencies, the magnetic field strength of the dominating jet feature is estimated of an order of 0.1*delta mG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا