ترغب بنشر مسار تعليمي؟ اضغط هنا

The Herschel Cold Debris Disks: Confusion with the Extragalactic Background at 160 mu

197   0   0.0 ( 0 )
 نشر من قبل Andras Gaspar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Herschel DUst around NEarby Stars (DUNES) survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.



قيم البحث

اقرأ أيضاً

Aims: We aim to demonstrate that the Herschel ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the sur vey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods: We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results: We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme.
Cold debris disks (T$<$200 K) are analogues to the dust in the Solar Systems Kuiper belt--dust generated from the evaporation and collision of minor bodies perturbed by planets, our Sun, and the local interstellar medium. Scattered light from debris disks acts as both a signpost for unseen planets as well as a source of contamination for directly imaging terrestrial planets, but many details of these disks are poorly understood. We lay out a critical observational path for the study of nearby debris disks that focuses on defining an empirical relationship between scattered light and thermal emission from a disk, probing the dynamics and properties of debris disks, and directly determining the influence of planets on disks. We endorse the findings and recommendations published in the National Academy reports on Exoplanet Science Strategy and Astrobiology Strategy for the Search for Life in the Universe. This white paper extends and complements the material presented therein with a focus on debris disks around nearby stars. Separate complementary papers are being submitted regarding the inner warm regions of debris disks (Mennesson et al.), the modeling of debris disk evolution (Gaspar et al.), studies of dust properties (Chen et al.), and thermal emission from disks (Su et al.).
110 - A. V. Krivov , C. Eiroa , T. Lohne 2013
(abridged) Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100{mu}m or shorter. However, six out of 31 excess sources in the Herschel OTKP DUNES have been seen to show significant - and in some cas es extended - excess emission at 160{mu}m, which is larger than the 100{mu}m excess. This excess emission has been suggested to stem from debris disks colder than those known previously. Using several methods, we re-consider whether some or even all of the candidates may be associated with unrelated galactic or extragalactic emission and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the SEDs and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100{mu}m, regardless of their material composition. To explain the dearth of small grains, we explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than kilometers in size. Thus planetesimal formation, at least in the outer regions of the systems, has stopped before cometary or asteroidal sizes were reached.
We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160 and 250 um and detect the disk at 350 and 500 um. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al. (2009), we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 - 310 AU, with some flexibility (+/- 10 AU) on the inner edge, and the external halo which extends to ~2000 AU. We measure the disk inclination to be 26 +/- 3 deg from face-on at a position angle of 64 deg E of N, establishing that the disk is coplanar with the star and planets. The SED of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 +/- 30 um, however, is short compared to other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 um), implying two distinct halo dust grain populations.
(Abridged) The radii of debris disks and the sizes of their dust grains are tracers of the formation mechanisms and physical processes operating in these systems. We use a sample of 34 debris disks spatially resolved in various Herschel programs to c onstrain them. While we modeled disks with both warm and cold components, we focus our analysis only on the cold outer disks, i.e. Kuiper-belt analogs. The disk radii derived from the resolved images reveal a large dispersion, but no significant trend with the stellar luminosity, which argues against ice lines as a dominant player in setting the debris disk sizes. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distributions to determine the dust temperatures and the grain size distributions. While the dust temperature systematically increases towards earlier spectral types, its ratio to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by an increase of typical grain sizes towards more luminous stars. The sizes are compared to the radiation pressure blowout limit $s_text{blow}$ that is proportional to the stellar luminosity-to-mass ratio and thus also increases towards earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times $s_text{blow}$ at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of $s_text{blow}$, appear to decrease with the luminosity, which may be suggestive of the disks stirring level increasing towards earlier-type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا