ﻻ يوجد ملخص باللغة العربية
Non-equilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the pre-existed static patterns evolve into dynamic patterns either via disordered phase or depinned patterns, or via the formation of non-equilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.
We study the effects of lattice type on polaron dynamics using a continuous-time quantum Monte-Carlo approach. Holstein and screened Froehlich polarons are simulated on a number of different Bravais lattices. The effective mass, isotope coefficients,
A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a
Elementary particles possess quantized values of charge and internal angular momentum or spin. These characteristics do not change when the particles interact with other particles or fields as long as they preserve their entities. Quantum theory does
We develop a statistical theory for the dynamics of non-aligning, non-interacting self-propelled particles confined in a convex box in two dimensions. We find that when the size of the box is small compared to the persistence length of a particles tr