ﻻ يوجد ملخص باللغة العربية
Elementary particles possess quantized values of charge and internal angular momentum or spin. These characteristics do not change when the particles interact with other particles or fields as long as they preserve their entities. Quantum theory does not explain this quantization. It is introduced into the theory a priori. An interacting particle is an open system and thus does not obey conservation laws. However, an open system may create dynamically stable states with unchanged dynamical variables via self-organization. In self-organized systems stability is achieved through the interplay of nonlinearity and dissipation. Can self-organization be responsible for particle formation? In this paper we develop and analyze a particle model based on qualitative dynamics and the Feigenbaum universality. This model demonstrates that elementary particles can be described as self-organized dynamical systems belonging to a wide class of systems characterized by a hierarchy of period-doubling bifurcations. This semi-qualitative heuristic model gives possible explanations for charge and action quantization, and the origination and interrelation between the strong, weak, and electromagnetic forces, as well as SU(2) symmetry. It also provides a basis for particle taxonomy endorsed by the Standard Model. The key result is the discovery that the Planck constant is intimately related to elementary charge.
We propose a dynamical model in which a network structure evolves in a self-organized critical (SOC) manner and explain a possible origin of the emergence of fractal and small-world networks. Our model combines a network growth and its decay by failu
In this paper, a simple dynamical model in which fractal networks are formed by self-organized critical (SOC) dynamics is proposed; the proposed model consists of growth and collapse processes. It has been shown that SOC dynamics are realized by the
Multimode fibres (MMFs) are attracting interest for complex spatiotemporal dynamics, and for ultrafast fibre sources, imaging and telecommunications. This new interest is based on three key properties: their high spatiotemporal complexity (informatio
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant r
Stationarity of the constituents of the body and of its functionalities is a basic requirement for life, being equivalent to survival in first place. Assuming that the resting state activity of the brain serves essential functionalities, stationarity