ﻻ يوجد ملخص باللغة العربية
We explore the influence of particle shape on the behavior of evaporating drops. A first set of experiments discovered that particle shape modifies particle deposition after drying. For sessile drops, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. Experiments elucidate the kinetics of ellipsoids and spheres at the drops edge. A second set of experiments examined evaporating drops confined between glass plates. In this case, colloidal particles coat the ribbon-like air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase, which in turn introduces a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres after drying. A final set of experiments investigates the effect of surfactants in evaporating drops. The radially outward flow that pushes particles to the drops edge also pushes surfactants to the drops edge, which leads to a radially inward flow on the drop surface. The presence of radially outward flows in the bulk fluid and radially inward flows at the drop surface creates a Marangoni eddy, among other effects, which also modifies deposition after drying.
We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edg
The motion of an optically trapped sphere constrained by the vicinity of a wall is investigated at times where hydrodynamic memory is significant. First, we quantify, in bulk, the influence of confinement arising from the trapping potential on the sp
The analytical expressions for the time-dependent cross-correlations of the translational and rotational Brownian displacements of a particle with arbitrary shape are derived. The reference center is arbitrary, and the reference frame is such that th
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that
We report on a new mode of self-propulsion exhibited by compact drops of active liquids on a substrate which, remarkably, is tractionless, i.e., which imparts no mechanical stress locally on the surface. We show, both analytically and by numerical si