ﻻ يوجد ملخص باللغة العربية
Bulk, shear, and compressional aggregate sound velocities of hydrogen and helium in the close- packed hexagonal structure are calculated over a wide pressure range using two complementary approaches: semi-empirical lattice dynamics based on the many-body intermolecular potentials and density-functional theory in the generalized gradient approximation. The sound velocities are used to calculate pressure dependence of the Debye temperature. The comparison between experiment and first-principle and semi-empirical calculations provide constraints on the density dependence of intermolecular interactions in the zero-temperature limit.
The free energy and other thermodynamic properties of hexagonal-close-packed iron are calculated by direct {em ab initio} methods over a wide range of pressures and temperatures relevant to the Earths core. The {em ab initio} calculations are based o
High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transit
Bulk superfluid helium supports two sound modes: first sound is an ordinary pressure wave, while second sound is a temperature wave, unique to inviscid superfluid systems. These sound modes do not usually exist independently, but rather variations in
Nanocrystalline Ni can adopt a hexagonal close-packed (hcp) structure,which does not appear in a bulk form under any conditions.Structural studies found its $>$ 20% expansion of volume per atom compared with face-centered cubic (fcc) Ni.Hard x-ray ph
The superfluid $^3$He B phase, one of the oldest unconventional fermionic condensates experimentally realized, is recently predicted to support Majorana fermion surface states. Majorana fermion, which is characterized by the equivalence of particle a