ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence from Tunneling Spectroscopy for a Quasi-One Dimensional Origin of Superconductivity in Sr2RuO4

92   0   0.0 ( 0 )
 نشر من قبل Samuel Lederer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To establish the mechanism of unconventional superconductivity in Sr$_2$RUO$_4$, a prerequisite is direct information concerning the momentum-space structure of the energy gaps $Delta_i(k)$, and in particular whether the pairing strength is stronger (dominant) on the quasi-1D ($alpha$ and $beta$) or on the quasi-2D ($gamma$) Fermi surfaces. We present scanning tunneling microscopy (STM) measurements of the density-of-states spectra in the superconducting state of Sr$_2$RuO$_4$ for $0.1 T_C<T<T_C$, and analyze them, along with published thermodynamic data, using a simple phenomenological model. We show that our observation of a single superconducting gap scale with maximum value $2Delta approx 5 T_C$ along with a spectral shape indicative of line nodes is consistent, within a weak-coupling model, with magnetically mediated odd-parity superconductivity generated by dominant, near-nodal Cooper pairing on the $alpha$ and $beta$ bands.



قيم البحث

اقرأ أيضاً

Point-contact tunneling on CaC$_6$ crystals reproducibly reveals superconducting gaps, $Delta$, of 2.3$pm$0.2 meV which are $sim$~40% larger than earlier reports. That puts CaC$_6$ into the class of very strong-coupled superconductors since 2$Delta$/ kT$_csim$~4.6. Thus soft Ca phonons will be primarily involved in the superconductivity, a conclusion that explains the large Ca isotope effect found recently for CaC$_6$. Consistency among superconductor-insulator-normal metal (SIN), SIS and Andreev reflection (SN) junctions reinforces the intrinsic nature of this result.
The superconducting state of the newly discovered superconductor K$_2$Cr$_3$As$_3$ with a quasi-one-dimensional crystal structure ($T_{bf c}sim$ 6 K) has been investigated by using magnetization and muon-spin relaxation or rotation ($mu$SR) measureme nts. Our analysis of the temperature dependence of the superfluid density obtained from the transverse field (TF) $mu$SR measurements fit very well to an isotropic $s$-wave character for the superconducting gap. Furthermore a similarly good fit can also be obtained using a $d$-wave model with line nodes. Our zero-field $mu$SR measurements do reveal very weak evidence of the spontaneous appearance of an internal magnetic field near the transition temperature, which might indicate that the superconducting state is not conventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models of K$_2$Cr$_3$As$_3$. Furthermore, from our TF $mu$SR study the magnetic penetration depth $lambda_L$, superconducting carrier density $n_s$, and effective-mass enhancement $m^*$ have been estimated to be $lambda_L(0)$ = 454(4) nm, $n_s$ = 2.4$times$10$^{27}$ carriers/m$^3$, and $m^*$ = 1.75 $m_e$, respectively.
188 - Cheng Huang , Jing Guo , Kang Zhao 2020
Here we report a pressure-induced reemergence of superconductivity in recently discovered superconductor K2Mo3As3, which is the first experimental case observed in quasi-one-dimensional superconductors. We find that, after full suppression of the amb ient-pressure superconducting (SC-I) state at 8.7 GPa, an intermediary non-superconducting state sets in and prevails to the pressure up to 18.2 GPa, however, above this pressure a new superconducting (SC-II) state appears unexpectedly. High pressure x-ray diffraction measurements demonstrate that the pressure-induced dramatic change of the lattice parameter c contributes mainly to the emergence of the SC-II state. Combined with the theioretical calculations on band strcture, our results suggest that the reemergemce of superconductivity is associated with the change of the complicated interplay among different orbital electrons, driven by the pressure-induced unisotropic change of the lattice.
We report systematical studies of a new quasi-one-dimensional (1D) compound Ba3TiTe5 and the high-pressure induced superconductivity therein. Ba3TiTe5 was synthesized at high pressure and high temperature. It crystallizes into a hexagonal structure ( P63/mcm), which consists of infinite face-sharing octahedral TiTe6 chains and Te chains along the c axis, exhibiting a strong 1D characteristic structure. The first-principles calculations demonstrate that Ba3TiTe5 is a well-defined 1D conductor and thus, it can be considered a starting point to explore the exotic physics induced by pressure via enhancing the interchain hopping to move the 1D conductor to a high dimensional metal. For Ba3TiTe5, high-pressure techniques were employed to study the emerging physics dependent on interchain hopping, such as the Umklapp scattering effect, spin/charge density wave (SDW/CDW), superconductivity and non-Fermi Liquid behavior. Finally, a complete phase diagram was plotted. The superconductivity emerges from 8.8 GPa, near which the Umklapp gap is mostly suppressed. Tc is enhanced and reaches the maximum ~6 K at about 36.7 GPa, where the spin/charge density wave (SDW/CDW) is completely suppressed, and a non-Fermi Liquid behavior appears. Our results suggest that the appearance of superconductivity is associated with the fluctuation due to the suppression of Umklapp gap and the enhancement of Tc is related with the fluctuation of the SDW/CDW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا