ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to provide an intuitive and useful tool for analyzing the impurity bound state problem. We develop a semiclassical approach and apply it to an impurity in two dimensional systems with parabolic or Dirac like bands. Our method consists of reducing a higher dimensional problem into a sum of one dimensional ones using the two dimensional Green functions as a guide. We then analyze the one dimensional effective systems in the spirit of the wave function matching method as in the standard 1d quantum model. We demonstrate our method on two dimensional models with parabolic and Dirac-like dispersion, with the later specifically relevant to topological insulators.
Quasiparticle states in Dirac systems with complex impurity potentials are investigated. It is shown that an impurity site with loss leads to a nontrivial distribution of the local density of states (LDOS). While the real part of defect potential ind
The electronic properties of non-interacting particles moving on a two-dimensional bricklayer lattice are investigated numerically. In particular, the influence of disorder in form of a spatially varying random magnetic flux is studied. In addition,
We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have gene
New insights into transport properties of nanostructures with a linear dispersion along one direction and a quadratic dispersion along another are obtained by analysing their spectral stability properties under small perturbations. Physically relevan
Electrons in a Dirac semimetals possess linear dispersion in all three spatial dimensions, and form part of a developing platform of novel quantum materials. Bi$_{1-x}$Sb$_x$ supports a three-dimensional Dirac cone at the Sb-induced band inversion po