ﻻ يوجد ملخص باللغة العربية
The electronic properties of non-interacting particles moving on a two-dimensional bricklayer lattice are investigated numerically. In particular, the influence of disorder in form of a spatially varying random magnetic flux is studied. In addition, a strong perpendicular constant magnetic field $B$ is considered. The density of states $rho(E)$ goes to zero for $Eto 0$ as in the ordered system, but with a much steeper slope. This happens for both cases: at the Dirac point for B=0 and at the center of the central Landau band for finite $B$. Close to the Dirac point, the dependence of $rho(E)$ on the system size, on the disorder strength, and on the constant magnetic flux density is analyzed and fitted to an analytical expression proposed previously in connection with the thermal quantum Hall effect. Additional short-range on-site disorder completely replenishes the indentation in the density of states at the Dirac point.
We study the dynamics of Dirac and Weyl electrons in disordered point-node semimetals. The ballistic feature of the transport is demonstrated by simulating the wave-packet dynamics on lattice models. We show that the ballistic transport survives unde
We study the properties of the avoided or hidden quantum critical point (AQCP) in three dimensional Dirac and Weyl semi-metals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and f
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi
The goal of this paper is to provide an intuitive and useful tool for analyzing the impurity bound state problem. We develop a semiclassical approach and apply it to an impurity in two dimensional systems with parabolic or Dirac like bands. Our metho