ترغب بنشر مسار تعليمي؟ اضغط هنا

The Red MSX Source Survey: the Massive Young Stellar Population of our Galaxy

80   0   0.0 ( 0 )
 نشر من قبل Stuart Lumsden
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.L. Lumsden




اسأل ChatGPT حول البحث

We present the Red MSX Source (RMS) Survey, the largest statistically selected catalog of young massive protostars and HII regions to date. We outline the construction of the catalog using mid and near infrared color selection, as well as the detailed follow up work at other wavelengths, and at higher spatial resolution in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcseconds. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole, and find evidence that the most massive stars form: (i) preferentially nearer the Galactic centre than the anti-centre; (ii) in the most heavily reddened environments, suggestive of high accretion rates; and (iii) from the most massive cloud cores.

قيم البحث

اقرأ أيضاً

The purpose of this research is to study the connection of global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object population. The ana lysis in based on the combination of spectroscopic parallax-based reddening and distance determinations with main sequence and pre-main sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 Mo), the slope Gamma of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. On the other hand, the young stellar objects in the surrounding clusters fields are classified by low resolution spectra, spectral energy distribution fit with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed young stellar objects (except one) are found to be massive (more than 8 Mo). Using VVV and GLIMPSE color-color cuts we have selected a large number of new young stellar object candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classification on the basis of the light curves.
We present a comprehensive study of massive young stellar objects (YSOs) in the metal-poor galaxy NGC 6822 using IRAC and MIPS data obtained from the {em Spitzer Space Telescope}. We find over 500 new YSO candidates in seven massive star-formation re gions; these sources were selected using six colour-magnitude cuts. Via spectral energy distribution fitting to the data with YSO radiative transfer models we refine this list, identifying 105 high-confidence and 88 medium-confidence YSO candidates. For these sources we constrain their evolutionary state and estimate their physical properties. The majority of our YSO candidates are massive protostars with an accreting envelope in the initial stages of formation. We fit the mass distribution of the Stage I YSOs with a Kroupa initial mass function and determine a global star-formation rate of 0.039 $M_{odot} yr^{-1}$. This is higher than star-formation rate estimates based on integrated UV fluxes. The new YSO candidates are preferentially located in clusters which correspond to seven active high-mass star-formation regions which are strongly correlated with the 8 and 24 $mu$m emission from PAHs and warm dust. This analysis reveals an embedded high-mass star-formation region, Spitzer I, which hosts the highest number of massive YSO candidates in NGC 6822. The properties of Spitzer I suggest it is younger and more active than the other prominent H,{sc ii} and star-formation regions in the galaxy.
122 - H. D. B. Cooper 2013
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (~80%) of the targets are YSOs, of which 131 are massive YSOs (L_BOL > 5x10^3 L_solar), M > 8M_solar. This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < A_V < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brgamma, H_2, fluorescent FeII, CO bandhead, [FeII] and HeI 2-1 2^1S-2^1P, in order of frequency of occurrence. In total, ~40% of the YSOs display either fluorescent FeII 1.6878um or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ~60% of the sources exhibit [FeII] or H_2 emission, indicating the presence of an outflow. Three quarters of all sources have Brgamma in emission. A good correlation with bolometric luminosity was observed for both the Brgamma and H_2 emission line strengths, covering 1 L_solar< L_BOL < 3.5x10^5 L_solar. This suggests that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-
190 - J. S. Urquhart 2015
We present the results of ammonia observations towards 66 massive star forming regions identified by the Red MSX source survey. We have used the Green Bank Telescope and the K-band focal plane array to map the ammonia NH3 (1,1) and (2,2) inversion em ission at a resolution of 30 arcsec in 8 arcmin regions towards the positions of embedded massive star formation. We have identified a total of 115 distinct clumps, approximately two-thirds of which are associated with an embedded massive young stellar object or compact HII region, while the others are classified as quiescent. There is a strong spatial correlation between the peak NH3 emission and the presence of embedded objects. We derive the spatial distribution of the kinetic gas temperatures, line widths, and NH$_3$ column densities from these maps, and by combining these data with dust emission maps we estimate clump masses, H$_2$ column densities and ammonia abundances. The clumps have typical masses of ~1000 Msun and radii ~0.5 pc, line widths of ~2 km/s and kinetic temperatures of ~16-20 K. We find no significant difference between the sizes and masses of the star forming and quiescent subsamples; however, the distribution maps reveal the presence of temperature and line width gradients peaking towards the centre for the star forming clumps while the quiescent clumps show relatively uniform temperatures and line widths throughout. Virial analysis suggests that the vast majority of clumps are gravitationally bound and are likely to be in a state of global free fall in the absence of strong magnetic fields. The similarities between the properties of the two subsamples suggest that the quiescent clumps are also likely to form massive stars in the future, and therefore provide a excellent opportunity to study the initial conditions of massive pre-stellar and protostellar clumps.
While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age dist ributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at $sim$2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا