ﻻ يوجد ملخص باللغة العربية
This case study tests the possibility of prediction for success (or winner) components of four stock & shares market indices in a time period of three years from 02-Jul-2009 to 29-Jun-2012.We compare their performance ain two time frames: initial frame three months at the beginning (02/06/2009-30/09/2009) and the final three month frame (02/04/2012-29/06/2012). To label the components, average price ratio between two time frames in descending order is computed. The average price ratio is defined as the ratio between the mean prices of the beginning and final time period. The winner components are referred to the top one third of total components in the same order as average price ratio it means the mean price of final time period is relatively higher than the beginning time period. The loser components are referred to the last one third of total components in the same order as they have higher mean prices of beginning time period. We analyse, is there any information about the winner-looser separation in the initial fragments of the daily closing prices log-returns time series. The Leave-One-Out Cross-Validation with k-NN algorithm is applied on the daily log-return of components using a distance and proximity in the experiment. By looking at the error analysis, it shows that for HANGSENG and DAX index, there are clear signs of possibility to evaluate the probability of long-term success. The correlation distance matrix histograms and 2-D/3-D elastic maps generated from ViDaExpert show that the winner components are closer to each other and winner/loser components are separable on elastic maps for HANGSENG and DAX index while for the negative possibility indices, there is no sign of separation.
The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequen
We introduce a framework to infer lead-lag networks between the states of elements of complex systems, determined at different timescales. As such networks encode the causal structure of a system, infering lead-lag networks for many pairs of timescal
We propose a modified time lag random matrix theory in order to study time lag cross-correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross-correlation
A well-interpretable measure of information has been recently proposed based on a partition obtained by intersecting a random sequence with its moving average. The partition yields disjoint sets of the sequence, which are then ranked according to the
Trading volume movement prediction is the key in a variety of financial applications. Despite its importance, there is few research on this topic because of its requirement for comprehensive understanding of information from different sources. For in