ﻻ يوجد ملخص باللغة العربية
The paper presents a combination of the time-parallel parallel full approximation scheme in space and time (PFASST) with a parallel multigrid method (PMG) in space, resulting in a mesh-based solver for the three-dimensional heat equation with a uniquely high degree of efficient concurrency. Parallel scaling tests are reported on the Cray XE6 machine Monte Rosa on up to 16,384 cores and on the IBM Blue Gene/Q system JUQUEEN on up to 65,536 cores. The efficacy of the combined spatial- and temporal parallelization is shown by demonstrating that using PFASST in addition to PMG significantly extends the strong-scaling limit. Implications of using spatial coarsening strategies in PFASSTs multi-level hierarchy in large-scale parallel simulations are discussed.
Matrix computations, especially iterative PDE solving (and the sparse matrix vector multiplication subproblem within) using conjugate gradient algorithm, and LU/Cholesky decomposition for solving system of linear equations, form the kernel of many ap
We present a parallel algorithm for computing the approximate factorization of an $N$-by-$N$ kernel matrix. Once this factorization has been constructed (with $N log^2 N $ work), we can solve linear systems with this matrix with $N log N $ work. Kern
We introduce a time-implicit, finite-element based space-time discretization scheme for the backward stochastic heat equation, and for the forward-backward stochastic heat equation from stochastic optimal control, and prove strong rates of convergenc
This paper introduces an ultra-weak space-time DPG method for the heat equation. We prove well-posedness of the variational formulation with broken test functions and verify quasi-optimality of a practical DPG scheme. Numerical experiments visualize
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 var