ترغب بنشر مسار تعليمي؟ اضغط هنا

A Space-Time DPG Method for the Heat Equation

253   0   0.0 ( 0 )
 نشر من قبل Johannes Storn
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces an ultra-weak space-time DPG method for the heat equation. We prove well-posedness of the variational formulation with broken test functions and verify quasi-optimality of a practical DPG scheme. Numerical experiments visualize beneficial properties of an adaptive and parabolically scaled mesh-refinement driven by the built-in error control of the DPG method.



قيم البحث

اقرأ أيضاً

We develop and analyze a discontinuous Petrov--Galerkin method with optimal test functions (DPG method) for a shallow shell model of Koiter type. It is based on a uniformly stable ultraweak formulation and thus converges robustly quasi-uniformly. Num erical experiments for various cases, including the Scordelis--Lo cylindrical roof, elliptic and hyperbolic geometries, illustrate its performance. The built-in DPG error estimator gives rise to adaptive mesh refinements that are capable to resolve boundary and interior layers. The membrane locking is dealt with by raising the polynomial degree only of the tangential displacement trace variable.
We introduce a cousin of the DPG method - the DPG* method - discuss their relationship and compare the two methods through numerical experiments.
This article introduces the DPG-star (from now on, denoted DPG$^*$) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdeter mined discretization of a boundary value problem. In the same vein, the DPG$^*$ methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG$^*$ and DPG methods can be seen as generalizations of $mathcal{L}mathcal{L}^ast$ and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG$^*$ method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG$^*$ and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable.
We consider a stabilized finite element method based on a spacetime formulation, where the equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for the wave equation is considered, where data is known in an in terior subset of spacetime. For this problem, we consider a primal-dual discrete formulation of the continuum problem with the addition of stabilization terms that are designed with the goal of minimizing the numerical errors. We prove error estimates using the stability properties of the numerical scheme and a continuum observability estimate, based on the sharp geometric control condition by Bardos, Lebeau and Rauch. The order of convergence for our numerical scheme is optimal with respect to stability properties of the continuum problem and the interpolation errors of approximating with polynomial spaces. Numerical examples are provided that illustrate the methodology.
In this work, an $r$-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces th at we consider are given as the spans of wavelets-in-time and (locally refined) finite element spaces-in-space. Numerical results illustrate our theoretical findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا