ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for hydrogen two-level systems in atomic layer deposition oxides

160   0   0.0 ( 0 )
 نشر من قبل Moe Khalil
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-level system (TLS) defects in dielectrics are known to limit the performance of electronic devices. We study TLS using millikelvin microwave loss measurements of three atomic layer deposited (ALD) oxide films--crystalline BeO ($rm{c-BeO}$), amorphous $rm{Al_2O_3}$ ($rm{a-Al_2O_3}$), and amorphous $rm{LaAlO_3}$ ($rm{a-LaAlO_3}$)--and interpret them with room temperature characterization measurements. We find that the bulk loss tangent in the crystalline film is 6 times higher than in the amorphous films. In addition, its power saturation agrees with an amorphous distribution of TLS. Through a comparison of loss tangent data to secondary ion mass spectrometry (SIMS) impurity analysis we find that the dominant loss in all film types is consistent with hydrogen-based TLS. In the amorphous films excess hydrogen is found at the ambient-exposed surface, and we extract the associated hydrogen-based surface loss tangent. Data from films with a factor of 40 difference in carbon impurities revealed that carbon is currently a negligible contributor to TLS loss.


قيم البحث

اقرأ أيضاً

Superconducting nickelates appear to be difficult to synthesize. Since the chemical reduction of ABO3 (A: rare earth; B transition metal) with CaH2 may result in both, ABO2 and ABO2H, we calculate the topotactic H binding energy by density functional theory (DFT). We find intercalating H is energetically favorable for LaNiO2 but not for Sr-doped NdNiO2. This has dramatic consequences for the electronic structure as determined by DFT+dynamical mean field theory: that of 3d9 LaNiO2 is similar to (doped) cuprates, 3d8 LaNiO2H is a two-orbital Mott insulator. Topotactical H might hence explain why some nickelates are superconducting and others are not.
Advances in synthesis techniques and materials understanding have given rise to oxide heterostructures with intriguing physical phenomena that cannot be found in their constituents. In these structures, precise control of interface quality, including oxygen stoichiometry, is critical for unambiguous tailoring of the interfacial properties, with deposition of the first monolayer being the most important step in shaping a well-defined functional interface. Here, we studied interface formation and strain evolution during the initial growth of LaAlO3 on SrTiO3 by pulsed laser deposition, in search of a means for controlling the atomic-sharpness of the interfaces. Our experimental results show that growth of LaAlO3 at a high oxygen pressure dramatically enhances interface abruptness. As a consequence, the critical thickness for strain relaxation was increased, facilitating coherent epitaxy of perovskite oxides. This provides a clear understanding of the role of oxygen pressure during the interface formation, and enables the synthesis of oxide heterostructures with chemically-sharper interfaces.
A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required , such as magnetic tubes and spirals. Furthermore, the materials currently used to assemble these structures are predominantly magnetic metals that do not allow to study the magnetic response of the system separately from the electronic one. In the field of spintronics, the prototypical material used for such experiments is the ferrimagnetic insulator yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG). YIG is one of the best materials especially for magnonic studies due to its low Gilbert damping. Here, we report the first successful fabrication of YIG thin films via atomic layer deposition. To that end we utilize a supercycle approach based on the combination of sub-nanometer thin layers of the binary systems Fe$_2$O$_3$ and Y$_2$O$_3$ in the correct atomic ratio on Y$_3$Al$_5$O$_{12}$ substrates with a subsequent annealing step. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a good crystalline quality as well as magnetic properties comparable to other deposition techniques. One of the outstanding characteristics of atomic layer deposition is its ability to conformally coat arbitrarily-shaped substrates. ALD hence is the ideal deposition technique to grant an extensive freedom in choosing the shape of the magnetic system. The atomic layer deposition of YIG enables the fabrication of novel three dimensional magnetic nanostructures, which in turn can be utilized for experimentally investigating the phenomena predicted in those structures.
Atomic layer deposition was used to synthesize niobium silicide (NbSi) films with a 1:1 stoichiometry, using NbF5 and Si2H6 as precursors. The growth mechanism at 200oC was examined by in-situ quartz crystal microbalance (QCM) and quadrupole mass spe ctrometer (QMS). This study revealed a self-limiting reaction with a growth rate of 4.5 {AA}/cycle. NbSi was found to grow only on oxide-free films prepared using halogenated precursors. The electronic properties, growth rate, chemical composition, and structure of the films were studied over the deposition temperature range 150-400oC. For all temperatures, the films are found to be stoichiometric NbSi (1:1) with no detectable fluorine impurities, amorphous with a density of 6.65g/cm3, and metallic with a resistivity {rho}=150 {mu}{Omega}.cm at 300K for films thicker than 35 nm. The growth rate was nearly constant for deposition temperatures between 150-275oC, but increases above 300oC suggesting the onset of non-self limiting growth. The electronic properties of the films were measured down to 1.2K and revealed a superconducting transition at Tc=3.1K. To our knowledge, a superconducting niobium silicide film with a 1:1 stoichiometry has never been grown before by any technique.
Despite its interest for CMOS applications, Atomic Layer Deposition (ALD) of GeO$_{2}$ thin films, by itself or in combination with SiO$_{2}$, has not been widely investigated yet. Here we report the ALD growth of SiO$_{2}$/GeO$_{2}$ multilayers on S ilicon substrates using a so far unreported Ge precursor. The characterization of multilayers with various periodicities reveals successful layer-by-layer growth with electron density contrast and absence of chemical intermixing, down to a periodicity of 2 atomic layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا