ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Fatigue of Soldiers in Wireless Body Area Sensor Networks

191   0   0.0 ( 0 )
 نشر من قبل Dr. Nadeem Javaid
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless Body Area Sensor Networks (WBASNs) consist of on-body or in-body sensors placed on human body for health monitoring. Energy conservation of these sensors, while guaranteeing a required level of performance, is a challenging task. Energy efficient routing schemes are designed for the longevity of network lifetime. In this paper, we propose a routing protocol for measuring fatigue of a soldier. Three sensors are attached to soldiers body that monitor specific parameters. Our proposed protocol is an event driven protocol and takes three scenarios for measuring the fatigue of a soldier. We evaluate our proposed work in terms of network lifetime, throughput, remaining energy of sensors and fatigue of a soldier.



قيم البحث

اقرأ أيضاً

141 - N. Javaid , O. Rehman , N. Alrajeh 2013
One of the major challenges in Wireless Body Area Networks (WBANs) is to prolong the lifetime of network. Traditional research work focuses on minimizing transmit power, however, in the case of short range communication the consumption power in decod ing is significantly larger than transmit power. This paper investigates the minimization of total power consumption by reducing the decoding power consumption. For achieving a desired Bit Error Rate (BER), we introduce some fundamental results on the basis of iterative message-passing algorithms for Low Density Parity Check Code (LDPC). To reduce energy dissipation in decoder, LDPC based coded communications between sensors are considered. Moreover, we evaluate the performance of LDPC at different code rates and introduce Adaptive Iterative Decoding (AID) by exploiting threshold on the number of iterations for a certain BER. In iterative LDPC decoding, the total energy consumption of network is reduced by 20 to 25 percent.
73 - Osama Amjad , Ebrahim Bedeer , 2019
Electronic health monitoring is one of the major applications of wireless body area networks (WBANs) that helps with early detection of any abnormal physiological symptoms. In this paper, we propose and solve an optimization problem that maximizes th e energy efficiency (EE) of WBAN consisting of sensor nodes (SNs) equipped with energy harvesting capabilities communicating with an aggregator. We exploit the structure of the optimization problem to provide a sub-optimal solution at a lower computational complexity and derive the mathematical expressions of upper and lower bounds of the source rates of the SN. The simulation results reveal that the optimal allocation of the source rate to energy critical SNs improves the system performance of WBAN in terms of energy efficiency during different everyday activities.
147 - Qiao Li , Yifei Wei , Mei Song 2016
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Con sidering the unbalanced spatio-temporal properties of the energy supply across the deployment terrain of energy harvesting WSNs and the dynamic traffic load at each sensor node, the energy cooperation problem among sensor nodes is decomposed into two steps: the local energy storage at each sensor node based on its traffic load to meet its own needs; within the energy storage procedure sensor nodes with excess energy transmit a part of their energy to nodes with energy shortage through the energy trading. Inventory theory and game theory are respectively applied to solving the local energy storage problem at each sensor node and the energy trading problem among multiple sensor nodes. Numerical results show that compared with the static energy cooperation method without energy trading, the Stackelberg Model based Game we design in this paper can significantly improve the trading volume of energy thereby increasing the utilization ratio of the harvested energy which is unevenly distributed in the WSNs.
103 - Ioan Raicu 2004
One of the limitations of wireless sensor nodes is their inherent limited energy resource. Besides maximizing the lifetime of the sensor node, it is preferable to distribute the energy dissipated throughout the wireless sensor network in order to min imize maintenance and maximize overall system performance. We investigate a new routing algorithm that uses diffusion in order to achieve relatively even power dissipation throughout a wireless sensor network by making good local decisions. We leverage from concepts of peer-to-peer networks in which the system acts completely decentralized and all nodes in the network are equal peers. Our algorithm utilizes the node load, power levels, and spatial information in order to make the optimal routing decision. According to our preliminary experimental results, our proposed algorithm performs well according to its goals.
A new class of sensing paradigm known as lab-onskin where stretchable and flexible smart sensor devices are integrated into the skin, provides direct monitoring and diagnostic interfaces to the body. Distributed lab-on-skin wireless sensors have the ability to provide continuous long term assessment of the skin health. This paper proposes a distributed skin health monitoring system using a wireless body area network. The system is responsive to the dynamic changes in the skin health, and remotely reports on the same. The proposed algorithm detects the abnormal skin and creates an energy efficient data aggregation tree covering the affected area while putting the unnecessary sensors to sleep mode. The algorithm responds to the changing conditions of the skin by dynamically adapting the size and shape of the monitoring trees to that of the abnormal skin areas thus providing a comprehensive monitoring. Simulation results demonstrate the application and utility of the proposed algorithm for changing wound shapes and sizes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا