ﻻ يوجد ملخص باللغة العربية
We define convex-geometric counterparts of divided difference (or Demazure) operators from the Schubert calculus and representation theory. These operators are used to construct inductively polytopes that capture Demazure characters of representations of reductive groups. In particular, Gelfand-Zetlin polytopes and twisted cubes of Grossberg-Karshon are obtained in a uniform way.
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the t
Divided difference operators are degree-reducing operators on the cohomology of flag varieties that are used to compute algebraic invariants of the ring (for instance, structure constants). We identify divided difference operators on the equivariant
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo
The direct product of two Hilbert schemes of the same surface has natural K-theory classes given by the alternating Ext groups between the two ideal sheaves in question, twisted by a line bundle. We express the Chern classes of these virtual bundles in terms of Nakajima operators.
We prove some combinatorial conjectures extending those proposed in [13, 14]. The proof uses a vertex operator due to Nekrasov, Okounkov, and the first author [4] to obtain a gluing formula for the relevant generating series, essentially reducing the