ترغب بنشر مسار تعليمي؟ اضغط هنا

Divided difference operators on polytopes

127   0   0.0 ( 0 )
 نشر من قبل Valentina Kiritchenko
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We define convex-geometric counterparts of divided difference (or Demazure) operators from the Schubert calculus and representation theory. These operators are used to construct inductively polytopes that capture Demazure characters of representations of reductive groups. In particular, Gelfand-Zetlin polytopes and twisted cubes of Grossberg-Karshon are obtained in a uniform way.



قيم البحث

اقرأ أيضاً

A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the t heory of Newton-Okounkov convex bodies. Convex geometric push-pull operators yield an inductive construction of Newton-Okounkov polytopes of Bott-Samelson varieties. In particular, we construct a Minkowski sum of Feigin-Fourier-Littelmann-Vinberg polytopes using convex geometric push-pull operators in type A.
Divided difference operators are degree-reducing operators on the cohomology of flag varieties that are used to compute algebraic invariants of the ring (for instance, structure constants). We identify divided difference operators on the equivariant cohomology of G/P for arbitrary partial flag varieties of arbitrary Lie type, and show how to use them in the ordinary cohomology of G/P. We provide three applications. The first shows that all Schubert classes of partial flag varieties can be generated from a sequence of divided difference operators on the highest-degree Schubert class. The second is a generalization of Billeys formula for the localizations of equivariant Schubert classes of flag varieties to arbitrary partial flag varieties. The third gives a choice of Schubert polynomials for partial flag varieties as well as an explicit formula for each. We focus on the example of maximal Grassmannians, including Grassmannians of k-planes in a complex n-dimensional vector space.
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo sition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.
The direct product of two Hilbert schemes of the same surface has natural K-theory classes given by the alternating Ext groups between the two ideal sheaves in question, twisted by a line bundle. We express the Chern classes of these virtual bundles in terms of Nakajima operators.
We prove some combinatorial conjectures extending those proposed in [13, 14]. The proof uses a vertex operator due to Nekrasov, Okounkov, and the first author [4] to obtain a gluing formula for the relevant generating series, essentially reducing the computation to the case of complex projective space with three punctures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا