ترغب بنشر مسار تعليمي؟ اضغط هنا

Odd and even Kondo effects from emergent localisation in quantum point contacts

125   0   0.0 ( 0 )
 نشر من قبل Caspar van der Wal
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum point contact (QPC) is a very basic nano-electronic device: a short and narrow transport channel between two electron reservoirs. In clean channels electron transport is ballistic and the conductance $G$ is then quantised as a function of channel width with plateaus at integer multiples of $2e^2/h$ ($e$ is the electron charge and $h$ Plancks constant). This can be understood in a picture where the electron states are propagating waves, without need to account for electron-electron interactions. Quantised conductance could thus be the signature of ultimate control over nanoscale electron transport. However, even studies with the cleanest QPCs generically show significant anomalies on the quantised conductance traces and there is consensus that these result from electron many-body effects. Despite extensive experimental and theoretical studies understanding of these anomalies is an open problem. We report evidence that the many-body effects have their origin in one or more spontaneously localised states that emerge from Friedel oscillations in the QPC channel. Kondo physics will then also contribute to the formation of the many-body state with Kondo signatures that reflect the parity of the number of localised states. Evidence comes from experiments with length-tunable QPCs that show a periodic modulation of the many-body physics with Kondo signatures of alternating parity. Our results are of importance for assessing the role of QPCs in more complex hybrid devices and proposals for spintronic and quantum information applications. In addition, our results show that tunable QPCs offer a rich platform for investigating many-body effects in nanoscale systems, with the ability to probe such physics at the level of a single site.



قيم البحث

اقرأ أيضاً

250 - B. Brun , F. Martins , S. Faniel 2013
Quantum point contacts exhibit mysterious conductance anomalies in addition to well known conductance plateaus at multiples of 2e^2/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position.
Point-contact spectroscopy is applied to study the energy dependence of paramagnetic impurities in noble metals. The samples are in the form of the so-called mechanically controllable break-junctions where the investigated piece of alloy makes a nano wire connecting two bulk electrodes.The lateral dimensions of the bridge are of the order of a few nm and can be continuously changed. Three qualitative dependences manifest the size effect while decreasing the contact diameter: 1) Intensity of Kondo peak due to Kondo scattering in point-contact spectra decreases slower than the nonlinearities due to phonon scatterings, 2) The width of the Kondo peak becomes broder, and 3) Due to the Zeeman energy, the splitting of Kondo peak in external and internal (for a spin glass) fields, is suppressed. Explanation of the phenomena is given in terms of the theory of Zarand and Udvardi where the local density of states (LDOS) of conduction electron fluctuates strongly inside a nanowire due to interference of electronic states. Since Kondo effect is a local probe of LDOS, the impurities located close to the maxima of LDOS show the increase of the Kondo temperature and give the primary contribution to the contact resistance.
103 - E.J. Koop , A.I. Lerescu , J. Liu 2007
The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-f actor for electrons in the QPC is enhanced, and a zero-bias peak in the conductance points to similarities with transport through a Kondo impurity. We report here how these many-body effects depend on QPC geometry. We find a clear relation between the enhanced g-factor and the subband spacing in our QPCs, and can relate this to the device geometry with electrostatic modeling of the QPC potential. We also measured the zero-field energy splitting related to the 0.7 anomaly, and studied how it evolves into a splitting that is the sum of the Zeeman effect and a field-independent exchange contribution when applying a magnetic field. While this exchange contribution shows sample-to-sample fluctuations and no clear dependence on QPC geometry, it is for all QPCs correlated with the zero-field splitting of the 0.7 anomaly. This provides evidence that the splitting of the 0.7 anomaly is dominated by this field-independent exchange splitting. Signatures of the Kondo effect also show no regular dependence on QPC geometry, but are possibly correlated with splitting of the 0.7 anomaly.
We present measurements of current noise in quantum point contacts as a function of source-drain bias, gate voltage, and in-plane magnetic field. At zero bias, Johnson noise provides a measure of the electron temperature. At finite bias, shot noise a t zero field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus (where shot noise vanishes), agrees quantitatively with a model of bias-dependent electron heating.
119 - Kenji Hirose , Yigal Meir , 2002
Spin-density-functional theory of quantum point contacts (QPCs) reveals the formation of a local moment with a net of one electron spin in the vicinity of the point contact - supporting the recent report of a Kondo effect in a QPC. The hybridization of the local moment to the leads decreases as the QPC becomes longer, while the onsite Coulomb-interaction energy remains almost constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا