ﻻ يوجد ملخص باللغة العربية
Spin-density-functional theory of quantum point contacts (QPCs) reveals the formation of a local moment with a net of one electron spin in the vicinity of the point contact - supporting the recent report of a Kondo effect in a QPC. The hybridization of the local moment to the leads decreases as the QPC becomes longer, while the onsite Coulomb-interaction energy remains almost constant.
We present measurements of current noise in quantum point contacts as a function of source-drain bias, gate voltage, and in-plane magnetic field. At zero bias, Johnson noise provides a measure of the electron temperature. At finite bias, shot noise a
The strength of the Zeeman splitting induced by an applied magnetic field is an important factor for the realization of spin-resolved transport in mesoscopic devices. We measure the Zeeman splitting for a quantum point contact etched into a Ga0.25In0
An unusual increase of the conductance with temperature is observed in clean quantum point contacts for conductances larger than 2e^2/h. At the same time a positive magnetoresistance arises at high temperatures. A model accounting for electron-electr
We fabricated strongly confined Schottky-gated quantum point contacts by etching Si/SiGe heterostructures and observed intriguing conductance quantization in units of approximately 1e2/h. Non-linear conductance measurements were performed depleting t
We investigate the transport properties of a superconducting quantum point contact in the presence of an arbitrary periodic drive. In particular, we calculate the dc current and noise in the tunnel limit, obtaining general expressions in terms of pho