ترغب بنشر مسار تعليمي؟ اضغط هنا

First Measurement of the Electromagnetic Form Factor of the Neutral Kaon at a Large Momentum Transfer and the Effect of $SU(3)$ Breaking

242   0   0.0 ( 0 )
 نشر من قبل Sean Dobbs
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

At large momentum transfers the photon interacts with the charges and spins of the constituent partons in a hadron. It is expected that the neutral kaon can acquire finite electromagnetic form factors because its wave function is affected by the order of magnitude difference between the mass of the strange quark and that of the down quark, or flavor $SU(3)$ breaking. We report on the first measurement of the form factor of neutral kaons at the large timelike momentum transfer of $|Q^2|=17.4$ GeV$^2$ by measuring the cross section for $e^+e^-to K_SK_L$ at $sqrt{s}=4.17$ GeV using CLEO-c data with an integrated luminosity of 586 pb$^{-1}$. We obtain $F_{K_SK_L}(17.4~textrm{GeV}^2)=5.3times10^{-3}$, with a 90% C.L. interval of $(2.9-8.2)times10^{-3}$. This is nearly an order of magnitude smaller than $F_{K^+K^-}(17.4~textrm{GeV}^2)=(44pm1)times10^{-3}$, and indicates that the effect of $SU(3)$ breaking is small. In turn, this makes it unlikely that the recently observed strong violation of the pQCD prediction, $F_{pi^+pi^-}(|Q^2|)/F_{K^+K^-}(|Q^2|)=f_pi^2/f_K^2$, which is based on the assumption of similar wave functions for the pions and kaons, can be attributed to $SU(3)$ breaking alone.

قيم البحث

اقرأ أيضاً

133 - J. Lowe , M.D. Scadron 2005
We use recent data on K^+ -> pi^+ e^+ e^-, together with known values for the pion form factor, to derive experimental values for the kaon electromagnetic form factor for 0 < q^2 < 0.125 (GeV/c)^2. The results are then compared with the predictions o f the Vector Meson Dominance model, which gives a good fit to the experimental results.
We compute the electromagnetic form factor of a pion with mass m_pi=330MeV at low values of Q^2equiv -q^2, where q is the momentum transfer. The computations are performed in a lattice simulation using an ensemble of the RBC/UKQCD collaborations gaug e configurations with Domain Wall Fermions and the Iwasaki gauge action with an inverse lattice spacing of 1.73(3)GeV. In order to be able to reach low momentum transfers we use partially twisted boundary conditions using the techniques we have developed and tested earlier. For the pion of mass 330MeV we find a charge radius given by <r_pi^2>_{330MeV}=0.354(31)fm^2 which, using NLO SU(2) chiral perturbation theory, extrapolates to a value of <r_pi^2>=0.418(31)fm^2 for a physical pion, in agreement with the experimentally determined result. We confirm that there is a significant reduction in computational cost when using propagators computed from a single time-slice stochastic source compared to using those with a point source; for m_pi=330MeV and volume (2.74fm)^3 we find the reduction is approximately a factor of 12.
The pion electromagnetic form factor is calculated at lower and higher momentum transfer in order to explore constituent quark models and the differences among those models. In particular, the light-front constituent quark model is utilized here to c alculate the pion electromagnetic form factor at lower and higher energies. The matrix elements of the electromagnetic current, are calculated with both plus and minus components of the electromagnetic current in the light-front. Further, the electromagnetic form factor is compared with other models in the literature and experimental data.
The charge form factor of $^$4He has been extracted in the range 29 fm$^{-2}$ $le Q^2 le 77$ fm$^{-2}$ from elastic electron scattering, detecting $^4$He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facilit y of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the $Q^2$ range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.
The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electron-nucleon scattering. These form factors are functions of the squared four-mome ntum transfer $Q^2$ between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH$_2$ analyzers. The scattered electron was detected in a large-acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors $G_E^p/G_M^p$. The measurements reported in this thesis took place at $Q^2=$5.2, 6.7, and 8.5 GeV$^2$, and represent the most accurate measurements of $G_E^p$ in this $Q^2$ region to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا