ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear response of tripartite entanglement to infinitesimal noise

141   0   0.0 ( 0 )
 نشر من قبل Fulin Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit pure state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one.



قيم البحث

اقرأ أيضاً

197 - Xingyu Guo , Chen-Te Ma 2021
We provide an analytical tripartite-study from the generalized $R$-matrix. It provides the upper bound of the maximum violation of Mermins inequality. For a generic 2-qubit pure state, the concurrence or $R$-matrix characterizes the maximum violation of Bells inequality. Therefore, people expect that the maximum violation should be proper to quantify Quantum Entanglement. The $R$-matrix gives the maximum violation of Bells inequality. For a general 3-qubit state, we have five invariant entanglement quantities up to local unitary transformations. We show that the five invariant quantities describe the correlation in the generalized $R$-matrix. The violation of Mermins inequality is not a proper diagnosis due to the non-monotonic behavior. We then classify 3-qubit quantum states. Each classification quantifies Quantum Entanglement by the total concurrence. In the end, we relate the experiment correlators to Quantum Entanglement.
Article presents general formulation of entanglement measures problem in terms of correlation function. Description of entanglement in probabilistic framework allow us to introduce new quantity which describes quantum and classical correlations. This formalism is applied to calculate bipartite and tripartite correlations in two special cases of entangled states of tripartite systems.
We investigate the process of entanglement transfer from a three-mode quantized field to a system of three spatially separated qubits each one made of a two-level atom resonantly coupled to a cavity mode. The optimal conditions for entanglement trans fer, evaluated by atomic tripartite negativity, are derived for radiation prepared in qubit-like and Gaussian entangled states in terms of field parameters, atom-cavity interaction time, cavity mirror losses, and atomic preparation. For qubit-like states we found that for negligible cavity losses some states may completely transfer their entanglement to the atoms and/or be exactly mapped to the atomic state, whereas for Gaussian states we found a range of field parameters to obtain a large entanglement transfer. The purity of the three-qubit states and the entanglement of two-qubit subsystems are also discussed in some details.
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for 3-qubit pure states in the GHZ class. We consider a family of states known as the generalized GHZ states and derive an analytical expression relating t he 3-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with 3-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states do violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized GHZ and maximal slice states.
A previously overlooked constraint for the distribution of entanglement in three-qubit systems is exploited for the first time and used to reveal a new genuine tripartite entanglement measure. It is interpreted as the area of a so-called concurrence triangle and is compared with other existing measures. The new measure is found superior to previous attempts for different reasons. A specific example is illustrated to show that two tripartite entanglement measures can be inequivalent due to the high dimensionality of the Hilbert space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا