ﻻ يوجد ملخص باللغة العربية
We investigate the process of entanglement transfer from a three-mode quantized field to a system of three spatially separated qubits each one made of a two-level atom resonantly coupled to a cavity mode. The optimal conditions for entanglement transfer, evaluated by atomic tripartite negativity, are derived for radiation prepared in qubit-like and Gaussian entangled states in terms of field parameters, atom-cavity interaction time, cavity mirror losses, and atomic preparation. For qubit-like states we found that for negligible cavity losses some states may completely transfer their entanglement to the atoms and/or be exactly mapped to the atomic state, whereas for Gaussian states we found a range of field parameters to obtain a large entanglement transfer. The purity of the three-qubit states and the entanglement of two-qubit subsystems are also discussed in some details.
The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two statio
In a quantum network, a key challenge is to minimize the direct reflection of flying qubits as they couple to stationary, resonator-based memory qubits, as the reflected amplitude represents state transfer infidelity that cannot be directly recovered
We investigate the time evolution of entanglement for bipartite systems of arbitrary dimensions under the influence of decoherence. For qubits, we determine the precise entanglement decay rates under different system-environment couplings, including
Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise ca
We provide an analytical tripartite-study from the generalized $R$-matrix. It provides the upper bound of the maximum violation of Mermins inequality. For a generic 2-qubit pure state, the concurrence or $R$-matrix characterizes the maximum violation