Orbital superexchange and crystal field simultaneously at play in YVO3: resonant inelastic x-ray scattering at the V L edge and the O K edge

225   0   0.0 ( 0 )
 نشر من قبل Eva Benckiser
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of orbital excitations in YVO3 by means of resonant inelastic x-ray scattering (RIXS) at energies across the vanadium L3 and oxygen K absorption edges. Due to the excellent experimental resolution we are able to resolve the intra-t2g excitations at 0.1-0.2 eV, 1.07 eV, and 1.28 eV, the lowest excitations from the t2g into the eg levels at 1.86 eV, and further excitations above 2.2 eV. For the intra-t2g excitations at 0.1-0.2 eV, the RIXS peaks show small shifts of the order of 10-40 meV as a function of temperature and of about 13-20 meV as a function of the transferred momentum q||a. We argue that the latter reflects a finite dispersion of the orbital excitations. For incident energies tuned to the oxygen K edge, RIXS is more sensitive to intersite excitations. We observe excitations across the Mott-Hubbard gap and find an additional feature at 0.4 eV which we attribute to two-orbiton scattering, i.e., an exchange of orbitals between adjacent sites. Altogether, these results indicate that both superexchange interactions and the coupling to the lattice are important for a quantitative understanding of the orbital excitations in YVO3.



قيم البحث

اقرأ أيضاً

388 - F. Vernay , B. Moritz , I. Elfimov 2007
We present calculations for resonant inelastic x-ray scattering (RIXS) in edge-shared copper oxide systems, such as CuGeO$_{3}$ and Li$_{2}$CuO$_{2}$, appropriate for hard x-ray scattering where the photoexcited electron lies above oxygen 2p and copp er 3d orbital energies. We perform exact diagonalizations of the multi-band Hubbard and determine the energies, orbital character and resonance profiles of excitations which can be probed via RIXS. We find excellent agreement with recent results on Li$_{2}$CuO$_{2}$ and CuGeO$_{3}$ in the 2-7 eV photon energy loss range.
We present a study of the resonant inelastic scattering response of ybin excited at the tender Yb $M_5$ X-ray edge. In the high-temperature, paramagnetic phase, we observe a multiplet structure which can be understood at an ionic level. Upon cooling through the valence transition at $T_vsim$ 40$K$, we observe a strong renormalization of the low-energy spectra, indicating a sensitivity to the formation of an intermediate valence phase at low temperatures. Similar spectrum renormalization has been observed in the optical conductivity, which suggests that the low-energy electronic structure possesses both mixed conduction and localized character.
275 - K. Ishii , T. Tohyama , S. Asano 2017
We investigate electronic excitations in La2-x(Br,Sr)xCuO4 using resonant inelastic x-ray scattering (RIXS) at the oxygen K edge. RIXS spectra of the hole-doped cuprates show clear momentum dependence below 1 eV. The spectral weight exhibits positive dispersion and shifts to higher energy with increasing hole concentration. Theoretical calculation of the dynamical charge structure factor on oxygen orbitals in a three-band Hubbard model is consistent with the experimental observation of the momentum and doping dependence, and therefore the dispersive mode is ascribed to intraband charge excitations which have been observed in electron-doped cuprates.
We present a study of resonant inelastic X-ray scattering (RIXS) spectra collected at the rare-earth $L$ edges of divalent hexaborides YbB$_6$ and EuB$_6$. In both systems, RIXS-active features are observed at two distinct resonances separated by $si m10$ eV in incident energy, with angle-dependence suggestive of distinct photon scattering processes. RIXS spectra collected at the divalent absorption peak strongly resemble the unoccupied 5$d$ density of states calculated using density functional theory, an occurrence we ascribe to transitions between weakly-dispersing 4$f$ and strongly dispersing 5$d$ states. In addition, anomalous resonant scattering is observed at higher incident energy, where no corresponding absorption feature is present. Our results suggest the far-reaching utility of $L$-edge RIXS in determining the itinerant-state properties of $f$-electron materials.
We present RIXS data at O K edge from La2-xSrxCuO4 vs. doping between x=0.10 and x=0.22 with attention to the magnetic excitations in the Mid-Infrared region. The sampling done by RIXS is the same as in the undoped cuprates provided the excitation is at the first pre-peak induced by doping. Note that this excitation energy is about 1.5 eV lower than that needed to see bimagnons in the parent compound. This approach allows the study of the upper region of the bimagnon continuum around 450 meV within about one third of the Brilluoin Zone around Gamma. The results show the presence of damped bimagnons and of higher even order spin excitations with almost constant spectral weight at all the dopings explored here. The implications on high Tc studies are briefly addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا