ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring itinerant states in divalent hexaborides using rare-earth $L$ edge resonant inelastic X-ray scattering

85   0   0.0 ( 0 )
 نشر من قبل Donal Sheets
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of resonant inelastic X-ray scattering (RIXS) spectra collected at the rare-earth $L$ edges of divalent hexaborides YbB$_6$ and EuB$_6$. In both systems, RIXS-active features are observed at two distinct resonances separated by $sim10$ eV in incident energy, with angle-dependence suggestive of distinct photon scattering processes. RIXS spectra collected at the divalent absorption peak strongly resemble the unoccupied 5$d$ density of states calculated using density functional theory, an occurrence we ascribe to transitions between weakly-dispersing 4$f$ and strongly dispersing 5$d$ states. In addition, anomalous resonant scattering is observed at higher incident energy, where no corresponding absorption feature is present. Our results suggest the far-reaching utility of $L$-edge RIXS in determining the itinerant-state properties of $f$-electron materials.

قيم البحث

اقرأ أيضاً

123 - Y. Lu , D. Betto , K. Fursich 2018
We have used high-resolution resonant inelastic x-ray scattering (RIXS) to study a thin film of NdNiO$_3$, a compound whose unusual spin- and bond-ordered electronic ground state has been of long-standing interest. Below the magnetic ordering tempera ture, we observe well-defined collective magnon excitations along different high-symmetry directions in momentum space. The magnetic spectra depend strongly on the incident photon energy, which we attribute to RIXS coupling to different local electronic configurations of the expanded and compressed NiO$_6$ octahedra in the bond-ordered state. Both the noncollinear magnetic ground state and the observed site-dependent magnon excitations are well described by a model that assumes strong competition between the antiferromagnetic superexchange and ferromagnetic double-exchange interactions. Our study provides direct insight into the magnetic dynamics and exchange interactions of the rare-earth nickelates, and demonstrates that RIXS can serve as a site-selective probe of magnetism in these and other materials.
388 - F. Vernay , B. Moritz , I. Elfimov 2007
We present calculations for resonant inelastic x-ray scattering (RIXS) in edge-shared copper oxide systems, such as CuGeO$_{3}$ and Li$_{2}$CuO$_{2}$, appropriate for hard x-ray scattering where the photoexcited electron lies above oxygen 2p and copp er 3d orbital energies. We perform exact diagonalizations of the multi-band Hubbard and determine the energies, orbital character and resonance profiles of excitations which can be probed via RIXS. We find excellent agreement with recent results on Li$_{2}$CuO$_{2}$ and CuGeO$_{3}$ in the 2-7 eV photon energy loss range.
In rare-earth cage compounds, the guest 4f ion cannot be considered as fixed at the centre of its cage. As result of the electronic degeneracy of the 4f shell, single-ion or collective mechanisms can redistribute the ion inside the cage, which can be described in terms of multipolar components. These mechanisms and their influence are here discussed and illustrated in relation with the rare-earth hexaboride series. Warning: Following our oral presentation, this manuscript should have appeared in the Proceedings of SCES 2014 (SCES 2014, International Conference on Strongly Correlated Electron Systems, held 7 - 11 July 2014 in Grenoble). An infuriated referee decided otherwise stating, in substance, that ... it could corrupt the youth ... (the very few interested in this particular the subject). The casual reader is here free to appreciate how far this corruption goes...
We present a study of the resonant inelastic scattering response of ybin excited at the tender Yb $M_5$ X-ray edge. In the high-temperature, paramagnetic phase, we observe a multiplet structure which can be understood at an ionic level. Upon cooling through the valence transition at $T_vsim$ 40$K$, we observe a strong renormalization of the low-energy spectra, indicating a sensitivity to the formation of an intermediate valence phase at low temperatures. Similar spectrum renormalization has been observed in the optical conductivity, which suggests that the low-energy electronic structure possesses both mixed conduction and localized character.
The control and detection of crystallographic chirality is an important and challenging scientific problem. Chirality has wide ranging implications from medical physics to cosmology including an intimate but subtle connection in magnetic systems, for example Mn$_{1-x}$Fe$_{x}$Si. X-ray diffraction techniques with resonant or polarized variations of the experimental setup are currently utilized to characterize lattice chirality. We demonstrate using theoretical calculations the feasibility of indirect $K$ -edge bimagnon resonant inelastic X-ray scattering (RIXS) spectrum as a viable experimental technique to distinguish crystallographic handedness. We apply spin wave theory to the recently discovered $sqrt {5}timessqrt {5}$ vacancy ordered chalcogenide Rb$_{0.89}$Fe$_{1.58}$Se$_{2}$ for realistic X-ray experimental set up parameters (incoming energy, polarization, and Bragg angle) to show that the computed RIXS spectrum is sensitive to the underlying handedness (right or left) of the lattice. A Flack parameter definition that incorporates the right- and left- chiral lattice RIXS response is introduced. It is shown that the RIXS response of the multiband magnon system RbFeSe arises both from inter- and intra- band scattering processes. The extinction or survival of these RIXS peaks are sensitive to the underlying chiral lattice orientation. This in turn allows for the identification of the two chiral lattice orientations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا