ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Ubiquitous, High-EW Nebular Emission in z~7 Galaxies: Towards a Clean Measurement of the Specific Star Formation Rate using a Sample of Bright, Magnified Galaxies

59   0   0.0 ( 0 )
 نشر من قبل Renske Smit
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Growing observational evidence now indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with lower specific star formation rates. However, corrections for this line emission have been very difficult to perform reliably due to huge uncertainties on the overall strength of such emission at z>~5.5. Here, we present the most direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line emission in Lyman-break galaxies at z~7, while also presenting a strategy for an improved measurement of the sSFR at z~7. We accomplish this through the selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the IRAC 4.5 micron flux provides a clean measurement of the stellar continuum light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a high S/N for our IRAC flux measurements, we consider only the brightest (H_{160}<26 mag) magnified galaxies we have identified in CLASH and other programs targeting galaxy clusters. Remarkably, the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5]=-0.9+/-0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [OIII]+Hbeta be greater than 637 Angstroms for the average source. The bluest four sources from our seven-source sample require an even more extreme EW of 1582 Angstroms. Our derived lower limit for the mean [OIII]+Hbeta EW could underestimate the true EW by ~2x based on a simple modeling of the redshift distribution of our sources. We can also set a robust lower limit of >~4 Gyr^-1 on the specific star formation rates based on the mean SED for our seven-source sample. (abridged)


قيم البحث

اقرأ أيضاً

The physical properties inferred from the SEDs of z>3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFR) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broad-band fluxes, we investigate the SEDs of 92 spectroscopically-confirmed galaxies in the redshift range 3.8<z<5.0 chosen because the H-alpha line lies within the Spitzer/IRAC 3.6 um filter. We demonstrate that the 3.6 um flux is systematically in excess of that expected from stellar continuum, which we derive by fitting the SED with population synthesis models. No such excess is seen in a control sample at 3.1<z<3.6 in which there is no nebular contamination in the IRAC filters. From the distribution of our 3.6 um flux excesses, we derive an H-alpha equivalent width (EW) distribution. The mean rest-frame H-alpha EW we infer at 3.8<z<5.0 (270 A) indicates that nebular emission contributes at least 30% of the 3.6 um flux. Via our empirically-derived EW distribution we correct the available stellar mass densities and show that the sSFR evolves more rapidly at z>4 than previously thought, supporting up to a 5x increase between z~2 and 7. Such a trend is much closer to theoretical expectations. Given our findings, we discuss the prospects for verifying quantitatively the nebular emission line strengths prior to the launch of the James Webb Space Telescope.
We study the role of feedback from supernovae and black holes in the evolution of the star formation rate function (SFRF) of z~4-7 galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulati ons), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both Supernova (SN) driven galactic winds and Active Galactic Nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at z>5, meaning that it cannot be used to discriminate between feedback models during reionisation. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination of strong SN winds and early AGN feedback in low mass galaxies. Conversely, we show that the choice of initial mass function and inclusion of metal cooling have less impact on the evolution of the SFRF. When variable winds are considered, we find that a non-aggressive wind scaling is needed to reproduce the SFRFs at z>4. Otherwise, the amount of objects with low SFRs is greatly suppressed and at the same time winds are not effective enough in the most massive systems.
Galaxy surveys targeting emission lines are characterising the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model sag with the photoionisation code mapp. We characterise the interstellar medium (ISM) of galaxies by relating the ionisation parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed ha, oii, oiii luminosity functions, and the the BPT diagram for local star-forming galaxies. The average ionisation parameter is found to increase towards low star-formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star-formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below $M_{rm halo} lesssim 10^{12} {[rm h^{-1} M_{odot}]}$. Finally, we exploit our modelling technique to predict galaxy number counts up to $zsim 10$ by targeting far-infrared (FIR) emission lines detectable with submillimetre facilities
We present the Super Eight galaxies - a set of very luminous, high-redshift ($7.1<z<8.0$) galaxy candidates found in Brightest of Reionizing Galaxies (BoRG) Survey fields. The original sample includes eight galaxies that are $Y$-band dropout objects with $H$-band magnitudes of $m_H<25.5$. Four of these objects were originally reported in Calvi et al. 2016. Combining new Hubble Space Telescope (HST) WFC3/F814W imaging and $Spitzer$ IRAC data with archival imaging from BoRG and other surveys, we explore the properties of these galaxies. Photometric redshift fitting places six of these galaxies in the redshift range of $7.1<z<8.0$, resulting in three new high-redshift galaxies and confirming three of the four high-redshift galaxy candidates from Calvi et al. 2016. We calculate the half-light radii of the Super Eight galaxies using the HST F160W filter and find that the Super Eight sizes are in line with typical evolution of size with redshift. The Super Eights have a mean mass of log(M$_*$/M$_odot$) $sim10$, which is typical for sources in this luminosity range. Finally, we place our sample on the UV $zsim8$ luminosity function and find that the Super Eight number density is consistent with other surveys in this magnitude and redshift range.
We present new results from our search for z~7 galaxies from deep spectroscopic observations of candidate z-dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only 2 galaxies have robust reds hift identifications, one from its Lyalpha emission line at z=6.65, the other from its Lyman-break, i.e. the continuum discontinuity at the Lyalpha wavelength consistent with a redshift 6.42, but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyalpha EW derived from the non detections in ultra-deep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z~7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Ly$alpha$ emission in z~7 Lyman break galaxies compared to z~6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا