ﻻ يوجد ملخص باللغة العربية
The physical properties inferred from the SEDs of z>3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFR) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broad-band fluxes, we investigate the SEDs of 92 spectroscopically-confirmed galaxies in the redshift range 3.8<z<5.0 chosen because the H-alpha line lies within the Spitzer/IRAC 3.6 um filter. We demonstrate that the 3.6 um flux is systematically in excess of that expected from stellar continuum, which we derive by fitting the SED with population synthesis models. No such excess is seen in a control sample at 3.1<z<3.6 in which there is no nebular contamination in the IRAC filters. From the distribution of our 3.6 um flux excesses, we derive an H-alpha equivalent width (EW) distribution. The mean rest-frame H-alpha EW we infer at 3.8<z<5.0 (270 A) indicates that nebular emission contributes at least 30% of the 3.6 um flux. Via our empirically-derived EW distribution we correct the available stellar mass densities and show that the sSFR evolves more rapidly at z>4 than previously thought, supporting up to a 5x increase between z~2 and 7. Such a trend is much closer to theoretical expectations. Given our findings, we discuss the prospects for verifying quantitatively the nebular emission line strengths prior to the launch of the James Webb Space Telescope.
We use a robust sample of 11 z~7 galaxies (z-dropouts) to estimate the stellar mass density of the universe when it was only ~750 Myr old. We combine the very deep optical to near-Infrared photometry from the HST ACS and NICMOS cameras with mid-Infra
We present results from a new Keck spectroscopic survey of UV-faint LBGs in the redshift range 3<z<7. Combined with earlier Keck and published ESO VLT data, our sample contains more than 600 dropouts, offering new insight into the nature of sub-L* so
As Lyman-alpha photons are scattered by neutral hydrogen, a change with redshift in the Lyman-alpha equivalent width distribution of distant galaxies offers a promising probe of the degree of ionization in the intergalactic medium and hence when cosm
We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z~4 Lyman-break galaxies (LBGs). LBGs are key tracers of the high-redshift star formation history and important sources of UV photons that ionized the inter
Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with WFC3/IR onboard the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star forming galaxies with de