ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Computation of the Conditional PCRLB for Quantized Decentralized Particle Filters

85   0   0.0 ( 0 )
 نشر من قبل Arash Mohammadi ARASH MOHAMMADI
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The conditional posterior Cramer-Rao lower bound (PCRLB) is an effective sensor resource management criteria for large, geographically distributed sensor networks. Existing algorithms for distributed computation of the PCRLB (dPCRLB) are based on raw observations leading to significant communication overhead to the estimation mechanism. This letter derives distributed computational techniques for determining the conditional dPCRLB for quantized, decentralized sensor networks (CQ/dPCRLB). Analytical expressions for the CQ/dPCRLB are derived, which are particularly useful for particle filter-based estimators. The CQ/dPCRLB is compared for accuracy with its centralized counterpart through Monte-Carlo simulations.

قيم البحث

اقرأ أيضاً

Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.
This work studies a fully distributed algorithm for computing the PageRank vector, which is inspired by the Matching Pursuit and features: 1) a fully distributed implementation 2) convergence in expectation with exponential rate 3) low storage requir ement (two scalar values per page). Illustrative experiments are conducted to verify the findings.
In this paper, we study systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration in order to carry out a giv en task. At the same time, the distributed task itself may now require global reconfiguration from a given initial network $G_s$ to a target network $G_f$ from a family of networks having some good properties, like small diameter. With reasonably powerful computational entities, there is a straightforward algorithm that transforms any $G_s$ into a spanning clique in $O(log n)$ time. The algorithm can then compute any global function on inputs and reconfigure to any target network in one round. We argue that such a strategy is impractical for real applications. In real dynamic networks there is a cost associated with creating and maintaining connections. To formally capture such costs, we define three edge-complexity measures: the emph{total edge activations}, the emph{maximum activated edges per round}, and the emph{maximum activated degree of a node}. The clique formation strategy highlighted above, maximizes all of them. We aim at improved algorithms that achieve (poly)log$(n)$ time while minimizing the edge-complexity for the general task of transforming any $G_s$ into a $G_f$ of diameter (poly)log$(n)$. We give three distributed algorithms. The first runs in $O(log n)$ time, with at most $2n$ active edges per round, an optimal total of $O(nlog n)$ edge activations, a maximum degree $n-1$, and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations and gives a target network of diameter $O(log n)$. Our third algorithm shows that if we slightly increase the maximum degree to polylog$(n)$ then we can achieve a running time of $o(log^2 n)$.
174 - Huamin Li , Yuval Kluger , 2016
Randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank ap proximation (in the form of a singular value decomposition) to an arbitrary matrix. Carefully honed algorithms yield results that are uniformly superior to those of the stock, deterministic implementations in Spark (the popular platform for distributed computation); in particular, whereas the stock software will without warning return left singular vectors that are far from numerically orthonormal, a significantly burnished randomized implementation generates left singular vectors that are numerically orthonormal to nearly the machine precision.
This invited paper presents some novel ideas on how to enhance the performance of consensus algorithms in distributed wireless sensor networks, when communication costs are considered. Of particular interest are consensus algorithms that exploit the broadcast property of the wireless channel to boost the performance in terms of convergence speeds. To this end, we propose a novel clustering based consensus algorithm that exploits interference for computation, while reducing the energy consumption in the network. The resulting optimization problem is a semidefinite program, which can be solved offline prior to system startup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا