ﻻ يوجد ملخص باللغة العربية
We analyze the defect scaling Lee-Yang model from the perturbed defect conformal field theory (DCFT) point of view. First the defect Lee-Yang model is solved by calculating its structure constants from the sewing relations. Integrable defect perturbations are identified in conformal defect perturbation theory. Then pure defect flows connecting integrable conformal defects are described. We develop a defect truncated conformal space approach (DTCSA) to analyze the one parameter family of integrable massive perturbations in finite volume numerically. Fusing the integrable defect to an integrable boundary the relation between the IR and UV parameters can be derived from the boundary relations. We checked these results by comparing the spectrum for large volumes to the scattering theory.
The supersymmetric Lee-Yang model is arguably the simplest interacting supersymmetric field theory in two dimensions, albeit non-unitary. A natural question is if there is an analogue of supersymmetric Lee-Yang fixed point in higher dimensions. The a
The four dimensional $mathcal{N}=4$ super-Yang-Mills (SYM) theory exhibits rich dynamics in the presence of codimension-one conformal defects. The new structure constants of the extended operator algebra consist of one-point functions of local operat
In this paper we study the ultraviolet and infrared behaviour of the self energy of a point-like charge in the vector and scalar Lee-Wick electrodynamics in a $d+1$ dimensional space time. It is shown that in the vector case, the self energy is stric
We study tree level one-point functions of non-protected scalar operators in the defect CFT, based on N=4 SYM, which is dual to the SO(5) symmetric D3-D7 probe brane system with non-vanishing instanton number. Whereas symmetries prevent operators fro
Lee-Yang zeros are points on the complex plane of magnetic field where the partition function of a spin system is zero and therefore the free energy diverges. Lee-Yang zeros and their generalizations are ubiquitous in many-body systems and they fully