ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronal-Temperature-Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration. II. Calibration with on-Orbit Data

64   0   0.0 ( 0 )
 نشر من قبل Noriyuki Narukage
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with the capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK. To make full use of this capability, Narukage et al. (Solar Phys. 269, 169, 2011) determined the thickness of each of the X-ray focal-plane analysis filters based on calibration measurements from the ground-based end-to-end test. However, in their paper, the calibration of the thicker filters for observations of active regions and flares, namely the med-Be, med-Al, thick-Al and thick-Be filters, was insufficient due to the insufficient X-ray flux used in the measurements. In this work, we recalibrate those thicker filters using quiescent active region data taken with multiple filters of XRT. On the basis of our updated calibration results, we present the revised coronal-temperature-diagnostic capability of XRT.


قيم البحث

اقرأ أيضاً

The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1 pixel size). XRT has nine X-ray analysis filters with different temperature r esponses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT.
We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. We also use ultra-dee p (>10^5s) exposures of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.
146 - Youli Tuo , Xiaobo Li , Mingyu Ge 2021
We present the timing system and the performances of the three payloads onboard the Insight-Hard X-ray Modulation Telescope (Insight-HXMT). Insight-HXMT carries three main payloads onboard: the High Energy X-ray telescope (HE, 20-250 keV), the Medium Energy X-ray telescope (ME, 5-30 keV) and the low Energy X-ray telescope (LE, 1-10 keV). We have reported the results of time-cumulative pulse profiles and period evolution using long-term monitoring data of the Crab pulsar. To compare the measurement of the time of arrivals (ToAs) on Crab pulsar, we use the quasi-simultaneous Crab observation with the X-ray Timing Instrument (XTI) on-board the Neutron star Interior Composition Explorer (NICER). The systematic errors of the timing system are determined to be 12.1 {mu}s, 8.6 {mu}s, and 15.8 {mu}s for HE, ME and LE respectively. The timing offsets are delayed with respect to NICER about 24.7 {mu}s, 10.1 {mu}s and 864.7 {mu}s for HE, ME and LE respectively.
168 - Matteo Bachetti 2020
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission is the first focusing X-ray telescope in the hard X-ray (3-79 keV) band. Among the phenomena that can be studied in this energy band, some require high time resolution and stability: rotation -powered and accreting millisecond pulsars, fast variability from black holes and neutron stars, X-ray bursts, and more. Moreover, a good alignment of the timestamps of X-ray photons to UTC is key for multi-instrument studies of fast astrophysical processes. In this Paper, we describe the timing calibration of the NuSTAR mission. In particular, we present a method to correct the temperature-dependent frequency response of the on-board temperature-compensated crystal oscillator. Together with measurements of the spacecraft clock offsets obtained during downlinks passes, this allows a precise characterization of the behavior of the oscillator. The calibrated NuSTAR event timestamps for a typical observation are shown to be accurate to a precision of ~65 microsec.
119 - Yukikatsu Terada 2007
The hard X-ray detector (HXD) on board the X-ray satellite Suzaku is designed to have a good timing capability with a 61 $mu$s time resolution. In addition to detailed descriptions of the HXD timing system, results of in-orbit timing calibration and performance of the HXD are summarized. The relative accuracy of time measurements of the HXD event was confirmed to have an accuracy of $1.9times 10^{-9}$ s s$^{-1}$ per day, and the absolute timing was confirmed to be accurate to 360 $mu$s or better. The results were achieved mainly through observations of the Crab pulsar, including simultaneous ones with RXTE, INTEGRAL, and Swift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا