ﻻ يوجد ملخص باللغة العربية
The advent of massive datasets (and the consequent design of high-performing distributed storage systems) have reignited the interest of the scientific and engineering community towards the design of lossless data compressors which achieve effective compression ratio and very efficient decompression speed. Lempel-Zivs LZ77 algorithm is the de facto choice in this scenario because of its decompression speed and its flexibility in trading decompression speed versus compressed-space efficiency. Each of the existing implementations offers a trade-off between space occupancy and decompression speed, so software engineers have to content themselves by picking the one which comes closer to the requirements of the application in their hands. Starting from these premises, and for the first time in the literature, we address in this paper the problem of trading optimally, and in a principled way, the consumption of these two resources by introducing the Bicriteria LZ77-Parsing problem, which formalizes in a principled way what data-compressors have traditionally approached by means of heuristics. The goal is to determine an LZ77 parsing which minimizes the space occupancy in bits of the compressed file, provided that the decompression time is bounded by a fixed amount (or vice-versa). This way, the software engineer can set its space (or time) requirements and then derive the LZ77 parsing which optimizes the decompression speed (or the space occupancy, respectively). We solve this problem efficiently in O(n log^2 n) time and optimal linear space within a small, additive approximation, by proving and deploying some specific structural properties of the weighted graph derived from the possible LZ77-parsings of the input file. The preliminary set of experiments shows that our novel proposal dominates all the highly engineered competitors, hence offering a win-win situation in theory&practice.
We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense
In this paper we discuss a novel data compression technique for binary symmetric sources based on the cavity method over a Galois Field of order q (GF(q)). We present a scheme of low complexity and near optimal empirical performance. The compression
The scheme of the sliding window is known in Information Theory, Computer Science, the problem of predicting and in stastistics. Let a source with unknown statistics generate some word $... x_{-1}x_{0}x_{1}x_{2}...$ in some alphabet $A$. For every mo
This paper provides an extensive study of the behavior of the best achievable rate (and other related fundamental limits) in variable-length lossless compression. In the non-asymptotic regime, the fundamental limits of fixed-to-variable lossless comp
Suppose there is a large file which should be transmitted (or stored) and there are several (say, m) admissible data-compressors. It seems natural to try all the compressors and then choose the best, i.e. the one that gives the shortest compressed fi