ﻻ يوجد ملخص باللغة العربية
The scheme of the sliding window is known in Information Theory, Computer Science, the problem of predicting and in stastistics. Let a source with unknown statistics generate some word $... x_{-1}x_{0}x_{1}x_{2}...$ in some alphabet $A$. For every moment $t, t=... $ $-1, 0, 1, ...$, one stores the word (window) $ x_{t-w} x_{t-w+1}... x_{t-1}$ where $w$,$w geq 1$, is called window length. In the theory of universal coding, the code of the $x_{t}$ depends on source ststistics estimated by the window, in the problem of predicting, each letter $x_{t}$ is predicted using information of the window, etc. After that the letter $x_{t}$ is included in the window on the right, while $x_{t-w}$ is removed from the window. It is the sliding window scheme. This scheme has two merits: it allows one i) to estimate the source statistics quite precisely and ii) to adapt the code in case of a change in the source statistics. However this scheme has a defect, namely, the necessity to store the window (i.e. the word $x_{t-w}... x_{t-1})$ which needs a large memory size for large $w$. A new scheme named the Imaginary Sliding Window (ISW) is constructed. The gist of this scheme is that not the last element $x_{t-w}$ but rather a random one is removed from the window. This allows one to retain both merits of the sliding window as well as the possibility of not storing the window and thus significantly decreasing the memory size.
The basic goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. The outcome of a test on a subset of items is positive if the subset has at least $u$ defe
The goal of group testing is to efficiently identify a few specific items, called positives, in a large population of items via tests. A test is an action on a subset of items which returns positive if the subset contains at least one positive and ne
Transcripts generated by automatic speech recognition (ASR) systems for spoken documents lack structural annotations such as paragraphs, significantly reducing their readability. Automatically predicting paragraph segmentation for spoken documents ma
The advent of massive datasets (and the consequent design of high-performing distributed storage systems) have reignited the interest of the scientific and engineering community towards the design of lossless data compressors which achieve effective
We investigate error propagation in sliding window decoding of braided convolutional codes (BCCs). Previous studies of BCCs have focused on iterative decoding thresholds, minimum distance properties, and their bit error rate (BER) performance at smal