ﻻ يوجد ملخص باللغة العربية
Let X be quasi-isometric to either the mapping class group equipped with the word metric, or to Teichmuller space equipped with either the Teichmuller metric or the Weil-Petersson metric. We introduce a unified approach to study the coarse geometry of these spaces. We show that the quasi-Lipschitz image in X of a box in R^n is locally near a standard model of a flat in X. As a consequence, we show that, for all these spaces, the geometric rank and the topological rank are equal. The methods are axiomatic and apply to a larger class of metric spaces.
We prove that the every quasi-isometry of Teichmuller space equipped with the Teichmuller metric is a bounded distance from an isometry of Teichmuller space. That is, Teichmuller space is quasi-isometrically rigid.
Given a surface of infinite topological type, there are several Teichmuller spaces associated with it, depending on the basepoint and on the point of view that one uses to compare different complex structures. This paper is about the comparison betwe
We introduce a certain type of representations for the quantum Teichmuller space of a punctured surface, which we call local representations. We show that, up to finitely many choices, these purely algebraic representations are classified by classica
Kashaev algebra associated to a surface is a noncommutative deformation of the algebra of rational functions of Kashaev coordinates. For two arbitrary complex numbers, there is a generalized Kashaev algebra. The relationship between the shear coordin
Extremal length is an important conformal invariant on Riemann surface. It is closely related to the geometry of Teichmuller metric on Teichmuller space. By identifying extremal length functions with energy of harmonic maps from Riemann surfaces to $