ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the compressed primary stellar wind in eta Carinae

135   0   0.0 ( 0 )
 نشر من قبل Mairan Teodoro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.

قيم البحث

اقرأ أيضاً

Context. The mass loss from massive stars is not understood well. Eta Car is a unique object for studying the massive stellar wind during the LBV phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, a lthough we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Methods. Observations of Eta Car were carried out with the ESO VLTI and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Br Gamma 2.166 micrometer emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is ~ 126 degree. The fan-shaped structure extends approximately 8.0 mas (~ 18.8 au) to the southeast and 5.8 mas (~ 13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of Eta Car.
427 - M. Teodoro 2011
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral feat ures, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II 4686 emission line (L~310 Lsun) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primarys wind probably explain the flare-like behavior of both the X-ray and He II 4686 light-curves. After a short-lived minimum, He II 4686 emission rises again to a ne
The interacting binary Eta Carinae remains one of the most enigmatic massive stars in our Galaxy despite over four centuries of observations. In this work, its light curve from the ultraviolet to the near-infrared is analysed using spatially resolved HST observations and intense monitoring at the La Plata Observatory, combined with previously published photometry. We have developed a method to separate the central stellar object in the ground-based images using HST photometry and applying it to the more numerous ground-based data, which supports the hypothesis that the central source is brightening faster than the almost-constant Homunculus. After detrending from long-term brightening, the light curve shows periodic orbital modulation ($Delta V$ $sim$ 0.6 mag) attributed to the wind-wind collision cavity as it sweeps around the primary star and it shows variable projected area to our line-of-sight. Two quasi-periodic components with time scales of 2-3 and 8-10 yr and low amplitude, $Delta V$ $<$ 0.2 mag, are superimposed on the brightening light-curve, being the only stellar component of variability found, which indicates minimal stellar instability. Moreover, the light curve analysis shows no evidence of `shell ejections at periastron. We propose that the long-term brightening of the stellar core is due to the dissipation of a dusty clump in front of the central star, which works like a natural coronagraph. Thus, the central stars appear to be more stable than previously thought since the dominant variability originates from a changing circumstellar medium. We predict that the brightening phase, due mainly to dust dissipation, will be completed around 2032 $pm$ 4 yr, when the star will be brighter than in the 1600s by up to $Delta V$ $sim$ 1 mag.
199 - Jose H. Groh 2012
We analyze spatially resolved spectroscopic observations of the Eta Carinae binary system obtained with HST/STIS. Eta Car is enshrouded by the dusty Homunculus nebula, which scatters light emitted by the central binary and provides a unique opportuni ty to study a massive binary system from different vantage points. We investigate the latitudinal and azimuthal dependence of H$alpha$ line profiles caused by the presence of a wind-wind collision (WWC) cavity created by the companion star. Using two-dimensional radiative transfer models, we find that the wind cavity can qualitatively explain the observed line profiles around apastron. Regions of the Homunculus which scatter light that propagated through the WWC cavity show weaker or no H alpha absorption. Regions scattering light that propagated through a significant portion of the primary wind show stronger P Cygni absorption. Our models overestimate the H alpha absorption formed in the primary wind, which we attribute to photoionization by the companion, not presently included in the models. We can qualitatively explain the latitudinal changes that occur during periastron, shedding light on the nature of Eta Cars spectroscopic events. Our models support the idea that during the brief period of time around periastron when the primary wind flows unimpeded toward the observer, H alpha absorption occurs in directions toward the central object and Homunculus SE pole, but not toward equatorial regions close to the Weigelt blobs. We suggest that observed latitudinal and azimuthal variations are dominated by the companion star via the WWC cavity, rather than by rapid rotation of the primary star.
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s pectrum of that event, Rest et al.2 conclude that a new physical mechanism is required to explain it, because the gas outflow appears cooler than theoretical expectations. Here we note that (1) theory predicted a substantially lower temperature than they quoted, and (2) their inferred observational value is quite uncertain. Therefore, analyses so far do not reveal any significant contradiction between the observed spectrum and most previous discussions of the Great Eruption and its physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا