ﻻ يوجد ملخص باللغة العربية
The electronic properties of lanthanide (from Eu to Tm) impurities in wurtzite gallium nitride and zinc oxide were investigated by first principles calculations, using an all electron methodology plus a Hubbard potential correction. The results indicated that the 4f-related energy levels remain outside the bandgap in both materials, in good agreement with a recent phenomenological model, based on experimental data. Additionally, zinc oxide doped with lanthanide impurities became an n-type material, showing a coupling between the 4f-related spin polarized states and the carriers. This coupling may generate spin polarized currents, which could lead to applications in spintronic devices.
Full investigation of deep defect states and impurities in wide-bandgap materials by employing commercial transient capacitance spectroscopy is a challenge, demanding very high temperatures. Therefore, a high-temperature deep-level transient spectros
Spintronic devices, such as non-volatile magnetic random access memories and logic devices, have attracted considerable attention as potential candidates for future high efficient data storage and computing technology. In a heavy metal or other emerg
The effects of isolated residual-gas adsorbates on the local electronic structure of the Dy(0001) surface were spatially mapped by scanning tunneling microscopy and spectroscopy at 12 K. Less than 15 A away from an adsorbate, a strong reduction of th
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio cal
The large electronic polarization in III-V nitrides allow for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-bandgap GaN heterojunctions is demonstrated by using polarization-induced electr