ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization-Induced Zener Tunnel Junctions in Wide-Bandgap Heterostructures

97   0   0.0 ( 0 )
 نشر من قبل Debdeep Jena
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large electronic polarization in III-V nitrides allow for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-bandgap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-bandgap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.

قيم البحث

اقرأ أيضاً

Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction higher than 50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced 3D charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. The design of graded tunnel junction structures could lead to low tunneling resistance below 10-3 Ohm cm2 and low voltage consumption below 1 V (at 1 kA/cm2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance, and can enable efficient emitters in the UV-C wavelength range.
By the insertion of thin InGaN layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the st rongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio cal culations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on IR-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.
Tunnel devices based on ferroelectric Hf0.5Zr0.5O2 (HZO) barriers hold great promises for emerging data storage and computing technologies. The resistance state of the device can be changed by a suitable writing voltage. However, the microscopic mech anisms leading to the resistance change are an intricate interplay between ferroelectric polarization controlled barrier properties and defect-related transport mechanisms. Here is shown the fundamental role of the microstructure of HZO films setting the balance between those contributions. The oxide film presents coherent or incoherent grain boundaries, associated to the existence of monoclinic and orthorhombic phases in HZO films, which are dictated by the mismatch with the substrates for epitaxial growth. These grain boundaries are the toggle that allows to obtain either large (up to 450 %) and fully reversible genuine polarization controlled electroresistance when only the orthorhombic phase is present or an irreversible and extremely large (1000-100000 %) electroresistance when both phases coexist.
143 - A. Hallal , B. Dieny , M. Chshiev 2014
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc ulation technique, that while the impurity near the interface has a drastic effect in decreasing the perpendicular magnetic anisotropy (PMA), its position within the bulk allows maintaining high surface PMA. Moreover, the effective magnetic anisotropy has a strong tendency to go from in-plane to out-of-plane character as a function of Cr and V concentration favoring out-of-plane magnetization direction for ~1.5 nm thick Fe layers at impurity concentrations above 20 %. At the same time, spin polarization is not affected and even enhanced in most situations favoring an increase of tunnel magnetoresistance (TMR) values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا