ﻻ يوجد ملخص باللغة العربية
The large electronic polarization in III-V nitrides allow for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-bandgap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-bandgap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.
Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application
By the insertion of thin InGaN layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the st
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio cal
Tunnel devices based on ferroelectric Hf0.5Zr0.5O2 (HZO) barriers hold great promises for emerging data storage and computing technologies. The resistance state of the device can be changed by a suitable writing voltage. However, the microscopic mech
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc