ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hot and Energetic Universe: The Optical Design of the Athena+ Mirror

92   0   0.0 ( 0 )
 نشر من قبل Didier Barret
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Athena+ X-ray mirror will provide a collecting area of 2 m^2 at 1 keV and an angular resolution of 5 arc seconds Half Energy Width. The manufacture and performance of this mirror is of paramount importance to the success of the mission. In order to provide the large collecting area a single aperture of diameter ~3 m must be densely populated with grazing incidence X-ray optics and to achieve the high angular resolution these optics must be of extremely high precision and aligned to tight tolerances. A large field of view of ~40 arc minutes diameter is possible using a combination of innovative technology and careful optical design. The large collecting area and large field of view deliver an impressive grasp of 0.5 deg^2 m^2 at 1 keV and the angular resolution will result in a source position accuracy of better than 1 arc second. The Silicon Pore Optics technology (SPO) which will deliver the impressive performance of the Athena+ mirror was developed uniquely by ESA and Cosine Measurement Systems specifically for the next generation of X-ray observatories and Athena+ represents the culmination of over 10 years of intensive technology developments. In this paper we describe the X-ray optics design, using SPO, which makes Athena+ possible for launch in 2028.

قيم البحث

اقرأ أيضاً

X-ray spectroscopy is key to address the theme of The Hot Universe, the still poorly understood astrophysical processes driving the cosmological evolution of the baryonic hot gas traceable through its electromagnetic radiation. Two future X-ray obser vatories: the JAXA-led XRISM (due to launch in the early 2020s), and the ESA Cosmic Vision L-class mission Athena (early 2030s) will provide breakthroughs in our understanding of how and when large-scale hot gas structures formed in the Universe, and in tracking their evolution from the formation epoch to the present day.
91 - A. Rau , N. Meidinger , K. Nandra 2013
The Wide Field Imager (WFI) is one of the two scientific instruments proposed for the Athena+ X-ray observatory. It will provide imaging in the 0.1-15 keV band over a wide field, simultaneously with spectrally and time-resolved photon counting. The i nstrument is designed to make optimal use of the grasp (collecting area times solid angle product) provided by the optical design of the Athena+ mirror system (Willingale et al. 2013), by combining a sensitive approx. 40 diameter field of view (baseline; 50 goal) DEPFET detector with a pixel size properly sampling the angular resolution of 5 arc sec on-axis (half energy width).This synthesis makes the WFI a very powerful survey instrument, significantly surpassing currently existing capabilities (Nandra et al. 2013; Aird et al. 2013). In addition, the WFI will provide unprecedented simultaneous high-time resolution and high count rate capabilities for the observation of bright sources with low pile-up and high efficiency. In this paper, we summarize the instrument design, the status of the technology development, and the baseline performance.
The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the L2 and L3 missions of its science program. The Athena+ science payload consists of a large aperture high angular resolution X-ray optics and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2.5 eV spectral resolution, with ~5 pixels, over a field of view of 5 arc minutes in diameter. In this paper, we briefly describe the Athena+ mission concept and the X-IFU performance requirements. We then present the X-IFU detector and readout electronics principles, the current design of the focal plane assembly, the cooling chain and review the global architecture design. Finally, we describe the current performance estimates, in terms of effective area, particle background rejection, count rate capability and velocity measurements. Finally, we emphasize on the latest technology developments concerning TES array fabrication, spectral resolution and readout performance achieved to show that significant progresses are being accomplished towards the demanding X-IFU requirements.
108 - Kirpal Nandra 2013
This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.
Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا