ترغب بنشر مسار تعليمي؟ اضغط هنا

Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

83   0   0.0 ( 0 )
 نشر من قبل Masahiro Ikoma
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

قيم البحث

اقرأ أيضاً

Planetary embryos form protoplanets via mutual collisions, which can lead to the development of magma oceans. During their solidification, large amounts of the mantles volatile contents may be outgassed. The resulting H$_2$O/CO$_2$ dominated steam at mospheres may be lost efficiently via hydrodynamic escape due to the low gravity and the high stellar EUV luminosities. Protoplanets forming later from such degassed building blocks could therefore be drier than previously expected. We model the outgassing and subsequent hydrodynamic escape of steam atmospheres from such embryos. The efficient outflow of H drags along heavier species (O, CO$_2$, noble gases). The full range of possible EUV evolution tracks of a solar-mass star is taken into account to investigate the escape from Mars-sized embryos at different orbital distances. The envelopes are typically lost within a few to a few tens of Myr. Furthermore, we study the influence on protoplanetary evolution, exemplified by Venus. We investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with observations. Starting from solar values, consistent isotope ratios (Ne, Ar) can be found for different solar EUV histories, as well as assumptions about the initial atmosphere (either pure steam or a mixture with accreted H). Our results generally favor an early accretion scenario with a small amount of accreted H and a low-activity Sun, because in other cases too much CO$_2$ is lost during evolution, which is inconsistent with Venus present atmosphere. Important issues are likely the time at which the initial steam atmosphere is outgassed and/or the amount of CO$_2$ which may still be delivered at later evolutionary stages. A late accretion scenario can only reproduce present isotope ratios for a highly active young Sun, but then very massive steam atmospheres would be required.
Collisions between large, similar-sized bodies are believed to shape the final characteristics and composition of terrestrial planets. Their inventories of volatiles such as water, are either delivered or at least significantly modified by such event s. Besides the transition from accretion to erosion with increasing impact velocity, similar-sized collisions can also result in hit-and-run outcomes for sufficiently oblique impact angles and large enough projectile-to-target mass ratios. We study volatile transfer and loss focusing on hit-and-run encounters by means of Smooth Particle Hydrodynamics simulations, including all main parameters: impact velocity, impact angle, mass ratio, and also the total colliding mass. We find a broad range of overall water losses, up to 75% in the most energetic hit-and-run events, and confirm the much more severe consequences for the smaller body also for stripping of volatile layers. Transfer of water between projectile and target inventories is found to be mostly rather inefficient, and final water contents are dominated by pre-collision inventories reduced by impact losses, for similar pre-collision water mass fractions. Comparison with our numerical results shows that current collision outcome models are not accurate enough to reliably predict these composition changes in hit-and-run events. To also account for non-mechanical losses we estimate the amount of collisionally vaporized water over a broad range of masses, and find that these contributions are particularly important in collisions of ~Mars-sized bodies, with sufficiently high impact energies, but still relatively low gravity. Our results clearly indicate that the cumulative effect of several (hit-and-run) collisions can efficiently strip protoplanets of their volatile layers, especially the smaller body, as it might be common e.g. for Earth-mass planets in systems with Super-Earths.
Magma oceans are a common result of the high degree of heating that occurs during planet formation. It is thought that almost all of the large rocky bodies in the Solar System went through at least one magma ocean phase. In this paper, we review some of the ways in which magma ocean models for the Earth, Moon, and Mars match present day observations of mantle reservoirs, internal structure, and primordial crusts, and then we present new calculations for the oxidation state of the mantle produced during the magma ocean phase. The crystallization of magma oceans likely leads to a massive mantle overturn that may set up a stably stratified mantle. This may lead to significant delays or total prevention of plate tectonics on some planets. We review recent models that may help partly alleviate the mantle stability issue and lead to earlier onset of plate tectonics.
The origin of Uranus and Neptune remains a challenge for planet formation models. A potential explanation is that the planets formed from a population of a few planetary embryos with masses of a few Earth masses which formed beyond Saturns orbit and migrated inwards. These embryos can collide and merge to form Uranus and Neptune. In this work we revisit this formation scenario and study the outcomes of such collisions using 3D hydrodynamical simulations. We investigate under what conditions the perfect-merging assumption is appropriate, and infer the planets final masses, obliquities and rotation periods, as well as the presence of proto-satellite disks. We find that the total bound mass and obliquities of the planets formed in our simulations generally agree with N-body simulations therefore validating the perfect-merging assumption. The inferred obliquities, however, are typically different from those of Uranus and Neptune, and can be roughly matched only in a few cases. In addition, we find that in most cases the planets formed in this scenario rotate faster than Uranus and Neptune, close to break-up speed, and have massive disks. We therefore conclude that forming Uranus and Neptune in this scenario is challenging, and further research is required. We suggest that future planet formation models should aim to explain the various physical properties of the planets such as their masses, compositions, obliquities, rotation rates and satellite systems.
It is likely that multiple bodies with masses between those of Mars and Earth (planetary embryos) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semi-major axes of hundreds of AU. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets so their semi-major axes are frozen in place. We conduct N-body simulations of this process, and its effect on smaller planetesimals in the region of the giant planets and the Kuiper belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40--70 AU, semi-major axis less than 200 AU, and inclination less than 30 degrees; (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar-system ephemerides; (iv) whether or not an embryo has survived to the present day, their dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia > 38 AU and semi-major axes between 80 and 500 AU).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا