ﻻ يوجد ملخص باللغة العربية
The results of systematic calculations of isospin-symmetry-breaking corrections to superallowed beta-decays based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT) are reviewed with an emphasis on theoretical uncertainties of the model. Extensions of the formalism towards no core shell model approach with basis cutoff scheme dictated by the self-consistent particle-hole DFT solutions will be also discussed.
We present results of systematic calculations of the isospin-symmetry-breaking corrections to the superallowed I=$0+,T=1 --> I=0+,T=1 beta-decays, based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory
Pioneering study of Gamow-Teller (GT) and Fermi matrix elements (MEs) using no-core-configuration-interaction formalism rooted in multi-reference density functional theory is presented. After successful test performed for 6He -> 6Li beta-decay, the m
The conventional Skyrme interaction is generalized by adding zero-range charge-symmetry-breaking and charge-independence-breaking terms, and the corresponding energy density functional is derived. It is shown that the extended model accounts for expe
Within the nuclear density functional theory (DFT) we study the effect of reflection-asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver AxialHFB that uses an approximate sec
Background: The superallowed beta-decay rates provide stringent constraints on physics beyond the Standard Model of particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections to the Fermi matrix e