ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin-breaking corrections to superallowed Fermi beta-decay in isospin- and angular-momentum-projected nuclear Density Functional Theory

313   0   0.0 ( 0 )
 نشر من قبل Wojciech Satula
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: The superallowed beta-decay rates provide stringent constraints on physics beyond the Standard Model of particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections to the Fermi matrix element of superallowed transitions must be applied. Purpose: We perform systematic calculations of isospin-breaking corrections to superallowed beta-decays and estimate theoretical uncertainties related to the basis truncation, time-odd polarization effects related to the intrinsic symmetry of the underlying Slater determinants, and to the functional parametrization. Methods: We use the self-consistent isospin- and angular-momentum-projected nuclear density functional theory employing two density functionals derived from the density independent Skyrme interaction. Pairing correlations are ignored. Our framework can simultaneously describe various effects that impact matrix elements of the Fermi decay: symmetry breaking, configuration mixing, and long-range Coulomb polarization. Results: The isospin-breaking corrections to the I=0+,T=1 --> I=0+,T=1 pure Fermi transitions are computed for nuclei from A=10 to A=98 and, for the first time, to the Fermi branch of the I,T=1/2 --> I,T=1/2 transitions in mirror nuclei from A=11 to A=49. We carefully analyze various model assumptions impacting theoretical uncertainties of our calculations and provide theoretical error bars on our predictions. Conclusions: The overall agreement with empirical isospin-breaking corrections is very satisfactory. Using computed isospin-breaking corrections we show that the unitarity of the CKM matrix is satisfied with a precision better than 0.1%.



قيم البحث

اقرأ أيضاً

We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismat ch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.
130 - M. Rafalski , W. Satula 2011
Recently, we have applied for the first time the angular momentum and isospin projected nuclear density functional theory to calculate the isospin-symmetry breaking (ISB) corrections to the superallowed beta-decay. With the calculated set of the ISB corrections we found |V_{ud}|=0.97447(23) for the leading element of the Cabibbo-Kobayashi-Maskawa matrix. This is in nice agreement with both the recent result of Towner and Hardy [Phys. Rev. {bf C77}, 025501 (2008)] and the central value deduced from the neutron decay. In this work we extend our calculations of the ISB corrections covering all superallowed transitions A,I^pi=0^+,T=1,T_z rightarrow A,I^pi=0^+,T=1,T_z+1 with T_z =-1,0 and A ranging from 10 to 74.
We investigate the radial-overlap part of the isospin-symmetry breaking correction to superallowed $0^+to 0^+$-decay using the shell-model approach similar to that of Refs. [1, 2]. The 8 sd-shell emitters with masses between $A=22$ and $A=38$ have be en re-examined. The Fermi matrix element is evaluated with realistic spherical single-particle wave functions, obtained from spherical Woods-Saxon (WS) or Hartree-Fock (HF) potentials, fine-tuned to reproduce the experimental data on charge radii and separation energies for nuclei of interest. The elaborated adjustment procedure removes any sensitivity of the correction to a specific parametrisation of the WS potential or to vario
In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear theory for calculations of superallowed Fermi $beta$-decay. Using the valence-space in-medium similarity renormalization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements for all T=1 isobaric analogue triplets of relevance to superallowed $beta$-decay for masses A=10 to A=74 and find an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are likely not responsible for the observed discrepancies.
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level all ows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Methods] The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly-dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. [Results] The theory is applied to calculate energy spectra in N~Z nuclei that are relevant from the point of view of a study of superallowed Fermi beta-decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. [Conclusions] It is demonstrated that the NCCI model is capable to capture main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا