ﻻ يوجد ملخص باللغة العربية
Theoretical analyses of the Dendritic Cell Algorithm (DCA) have yielded several criticisms about its underlying structure and operation. As a result, several alterations and fixes have been suggested in the literature to correct for these findings. A contribution of this work is to investigate the effects of replacing the classification stage of the DCA (which is known to be flawed) with a traditional machine learning technique. This work goes on to question the merits of those unique properties of the DCA that are yet to be thoroughly analysed. If none of these properties can be found to have a benefit over traditional approaches, then fixing the DCA is arguably less efficient than simply creating a new algorithm. This work examines the dynamic filtering property of the DCA and questions the utility of this unique feature for the anomaly detection problem. It is found that this feature, while advantageous for noisy, time-ordered classification, is not as useful as a traditional static filter for processing a synthetic dataset. It is concluded that there are still unique features of the DCA left to investigate. Areas that may be of benefit to the Artificial Immune Systems community are suggested.
The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders i
The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good w
As one of the solutions to intrusion detection problems, Artificial Immune Systems (AIS) have shown their advantages. Unlike genetic algorithms, there is no one archetypal AIS, instead there are four major paradigms. Among them, the Dendritic Cell Al
As one of the emerging algorithms in the field of Artificial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been successfully applied to a number of challenging real-world problems. However, one criticism is the lack of a formal definit
The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an invest