ترغب بنشر مسار تعليمي؟ اضغط هنا

Isoscalar amplitude dominance in $e^+e-$ annihilation to $Nbar{N}$ pair close to the threshold

183   0   0.0 ( 0 )
 نشر من قبل Vladimir Dmitriev
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Paris nucleon-antinucleon optical potential for explanation of experimental data in the process $e^+e^- rightarrow pbar p$ near threshold. It turns out that final-state interaction due to Paris optical potential allows us to reproduce available experimental data. It follows from our consideration that the isoscalar form factor is much larger than the isovector one.

قيم البحث

اقرأ أيضاً

Using recent BABAR, CMD-3 and SND data, the sum of $e^+e^- to 3(pi^+pi^-), 2(pi^+pi^-pi^0), pbar{p}, nbar{n}$ cross sections is obtained. Unlike $e^+e^- to 3(pi^+pi^-)$ and $e^+e^- to 2(pi^+pi^-pi^0)$ processes, no structures in total cross section a re found near the $Nbar{N}$ threshold within the limits of measurement errors.
The process $e^+e^- rightarrow Nbar N$ is studied nearby a threshold with account for polarizations of all initial and final particles. The nucleon polarization $bm zeta^N$ reveals a strong energy dependence due to that of the nucleon electromagnetic form factors $G_E(Q^2)$ and $G_M(Q^2)$ caused by the final-state interaction of nucleons. It is shown that the modulus of the ratio of these form factors and their relative phase can be determined by measuring $bm zeta^N$ along with the differential cross section. The polarization degree is analyzed using Paris $Nbar N$ optical potential for calculation of the form factors. It turns out that $|bm zeta^N|$ is high enough in a rather wide energy range above the threshold. Being especially high for longitudinally polarized beams, $|bm zeta^N|$ is noticeable even if both $e^+e^-$ beams are unpolarized.
The energy dependence of the cross sections of $pbar p$, $nbar n$, and meson production in $e^+e^-$ annihilation in the vicinity of the $pbar p$ and $nbar n$ thresholds is studied. The proton-neutron mass difference and the $pbar p$ Coulomb interacti on are taken into account. The values of the cross sections are very sensitive to the parameters of the optical potential. It is shown that the commonly accepted factorization approach for the account of the Coulomb interaction does not work well enough in the vicinity of the threshold due to the finite size of the optical potential well.
We compute the inclusive unpolarized dihadron production cross section in the far from back-to-back region of $e^+ e^-$ annihilation in leading order pQCD using existing fragmentation function fits and standard collinear factorization, focusing on th e large transverse momentum region where transverse momentum is comparable to the hard scale (the center-of-mass energy). We compare with standard transverse-momentum-dependent (TMD) fragmentation function-based predictions intended for the small transverse momentum region with the aim of testing the expectation that the two types of calculation roughly coincide at intermediate transverse momentum. We find significant tension, within the intermediate transverse momentum region, between calculations done with existing non-perturbative TMD fragmentation functions and collinear factorization calculations if the center-of-mass energy is not extremely large. We argue that $e^+ e^-$ measurements are ideal for resolving this tension and exploring the large-to-small transverse momentum transition, given the typically larger hard scales ($gtrsim 10$ GeV) of the process as compared with similar scenarios that arise in semi-inclusive deep inelastic scattering and fixed-target Drell-Yan measurements.
120 - Zhong-Yi Li , An-Xin Dai , 2021
The near-threshold $e^+e^- to Lambdabar{Lambda}$ reaction is studied with the assumption that the production mechanism is due to a near-$Lambda bar{Lambda}$-threshold resonance. The cross section of $e^+e^- to Lambdabar{Lambda}$ reaction is parametri zed in terms of the electromagnetic form factors of $Lambda$ hyperon, which are obtained within the vector meson dominance model. It is shown that the contribution to the $e^+e^- to Lambdabar{Lambda}$ reaction from a new narrow state with quantum numbers $J^{PC}=1^{--}$ is dominant for energies very close to threshold. The mass of this new state is about 2232 MeV, which is very close to the mass threshold of $Lambda bar{Lambda}$, while its width is just a few MeV. This solves the problem that all previous calculations seriously underestimate the near-threshold total cross section of the $e^+e^- to Lambdabar{Lambda}$ reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا