ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stacking in Bulk and Bilayer Hexagonal Boron Nitride

153   0   0.0 ( 0 )
 نشر من قبل Agnieszka Kuc
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory (local second-order Moller-Plesset perturbation theory, LMP2). Our results show that both electrostatic and London dispersion interactions are responsible for interlayer distance and stacking order, with AA being the most stable one. The minimum energy sliding path includes only the AA high-symmetry stacking, and the energy barrier is 3.4 meV per atom for the bilayer. State-of-the-art Density-functionals with and without London dispersion correction fail to correctly describe the interlayer energies with the exception of PBEsol that agrees very well with our LMP2 results and experiment.



قيم البحث

اقرأ أيضاً

The relative orientation of successive sheets, i.e. the stacking sequence, in layered two-dimensional materials is central to the electronic, thermal, and mechanical properties of the material. Often different stacking sequences have comparable cohes ive energy, leading to alternative stable crystal structures. Here we theoretically and experimentally explore different stacking sequences in the van der Waals bonded material hexagonal boron nitride (h-BN). We examine the total energy, electronic bandgap, and dielectric response tensor for five distinct high symmetry stacking sequences for both bulk and bilayer forms of h-BN. Two sequences, the generally assumed AA sequence and the relatively unknown (for h-BN) AB (Bernal) sequence, are predicted to have comparably low energy. We present a scalable modified chemical vapor deposition method that produces large flakes of virtually pure AB stacked h-BN; this new material complements the generally available AA stacked h-BN.
2D ferroelectrics with robust polarization down to atomic thicknesses provide novel building blocks for functional heterostructures. Experimental reports, however, remain scarce because of the requirement of a layered polar crystal. Here, we demonstr ate a rational design approach to engineering 2D ferroelectrics from a non-ferroelectric parent compound via employing van der Waals assembly. Parallel-stacked bilayer boron nitride is shown to exhibit out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed via the resistance of an adjacently-stacked graphene sheet. Furthermore, twisting the boron nitride sheets by a small-angle changes the dynamics of switching due to the formation of moire ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.
Hexagonal boron nitride (h-BN) has long been recognized as an ideal substrate for electronic devices due to its dangling-bond-free surface, insulating nature and thermal/chemical stability. Therefore, to analyse the lattice structure and orientation of h-BN crystals becomes important. Here, the stacking order and wrinkles of h-BN are investigated by transmission electron microscopy (TEM). It is experimentally confirmed that the layers in the h-BN flakes are arranged in the AA stacking. The wrinkles in a form of threefold network throughout the h-BN crystal are oriented along the armchair direction, and their formation mechanism was further explored by molecular dynamics simulations. Our findings provide a deep insight about the microstructure of h-BN and shed light on the structural design/electronic modulations of two-dimensional crystals.
We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic hamiltonian by drawing an analogy with molecular crystals, which a re other prototypical van der Waals materials. We employ this simplified model to analyse in detail the excitation spectrum of hexagonal boron nitride (hBN) that we have obtained from the {it ab initio} solution of the many-body Bethe-Salpeter equation as a function of momentum. In this way we identify the character of the lowest-energy excitons in hBN, discuss the effects of the interlayer hopping and the electron-hole exchange interaction on the exciton dispersion, and illustrate the relation between exciton and plasmon excitations in layered materials.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment s on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا