ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of Unique Total Ionizing Dose Effects in 0.2 um Partially-Depleted Silicon-on-Insulator Technology

111   0   0.0 ( 0 )
 نشر من قبل Yan-wei Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The total ionizing dose irradiation (TID) effects of partially depleted (PD) silicon-on-insulator (SOI)devices which fabricated with a commercial 0.2 um SOI process are investigated. Experimental results show an original phenomenon that the ON irradiation bias configuration is the worst-case bias for both front-gate and back-gate transistor. To understand the mechanism, a charge distribution model is proposed. We think that the performance degradation of the devices is due to the radiation induced positive charge trapped in the bottom corner of shallow trench isolation (STI) oxide. In addition, comparing the irradiation responses of short and long channel devices under different drain bias, the short channel transistors show a larger degeneration of leakage current and threshold voltage. The dipole theory is introduced to explain the TID enhanced short channel effect.

قيم البحث

اقرأ أيضاً

Light emission in atomically thin heterostructures is known to depend on the type of materials, number and stacking sequence of the constituent layers. Here we show that the thickness of a two-dimensional substrate can be crucial in modulating the li ght emission. We study the layer-dependent charge transfer in vertical heterostructures built from monolayer tungsten disulphide (WS2) on one- and two-layer epitaxial graphene, unravelling the effect that the interlayer electronic coupling has on the excitonic properties of such heterostructures. We bring evidence that the excitonic properties of WS2 can be effectively tuned by the number of supporting graphene layers. Integrating WS2 monolayers with two-layer graphene leads to a significant enhancement of the photoluminescence response, up to one order of magnitude higher compared to WS2 supported on one-layer graphene. Our findings highlight the importance of substrate engineering when constructing atomically thin layered heterostructures.
Nanodiamonds containing color centers open up many applications in quantum information processing, metrology, and quantum sensing. In particular, silicon vacancy (SiV) centers are prominent candidates as quantum emitters due to their beneficial optic al qualities. Here we characterize nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centers. Our results show that nanodiamond growth can be controlled and optimized for different applications.
We implanted ultra low doses (2x10^11 cm-2) of 121Sb ions into isotopically enriched 28Si and find high degrees of electrical activation and low levels of dopant diffusion after rapid thermal annealing. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant depths, and the interface quality. At 5.2 K, a spin decoherence time, T2, of 0.3 ms is found for profiles peaking 50 nm below a Si/SiO2 interface, increasing to 0.75 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.
A major challenge for the next generation of spintronics devices is the implementation of ferromagnetic-semiconductor thin films as spin injectors and detectors. Spin-polarised carrier injection cannot be accomplished efficiently from metals, and cou pled with the rarity of intrinsic ferromagnetic semiconductors this has driven intensive study of diluted magnetic semiconductors. Chief among these is the doped III-V compound (Ga,Mn)As. These materials suffer from a number of drawbacks; they (i) require magnetic-ion doping well above the solubility limit, and (ii) must be hole doped to above the degenerate limit, preventing independent control of the carrier concentration and charge sign. Here we demonstrate the first epitaxial growth of a recently-characterised intrinsic ferromagnetic semiconductor, GdN, on silicon substrates, providing an essential step on the way to integrate new spintronics functionalities into Si-based technology. The films have been characterised as regards their growth toward fully relaxed GdN, the density and mobility of their carriers, and their magnetic behaviour.
We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant k nown to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا