ﻻ يوجد ملخص باللغة العربية
Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunneling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalisation.
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi
We test the ability of semiclassical theory to describe quantitatively the revival of quantum wavepackets --a long time phenomena-- in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-d
We present the first experimental observation of resonance-assisted tunneling, a wave phenomenon, where regular-to-chaotic tunneling is strongly enhanced by the presence of a classical nonlinear resonance chain. For this we use a microwave cavity mad
We analyse the dynamics leading to radiative cooling of an atomic ensemble confined inside an optical cavity when the atomic dipolar transitions are incoherently pumped and can synchronize. Our study is performed in the semiclassical regime and assum
We demonstrate that a large class of one-dimensional quantum and classical exchange models can be described by the same type of graphs, namely Cayley graphs of the permutation group. Their well-studied spectral properties allow us to derive crucial i