ﻻ يوجد ملخص باللغة العربية
A general approach to description of multigravity models in D-dimensional space-time is presented. Different possibilities of generalization of the invariant volume are given. Then a most general form of the interaction potential is constructed, which for bigravity coincides with the Pauli-Fierz model. A thorough analysis of the model along the 3+1 expansion formalism is done. It is shown that the absence of ghosts the considered bigravity model is equivalent in the weak field limit to the massive gravity (the Pauli-Fierz model). Thus, on the concrete example it is shown, that the interaction between metrics leads to nonvanishing mass of graviton.
We investigate $U(1)^{,n}$ supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless t
We study the coupling of nuclear matter described by the BPS Skyrme model to generalized gravity. Concretely, we consider the Starobinsky model which provides the leading-order correction to the Einstein-Hilbert action. Static solutions describing ne
We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditio
We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wavefunctions of one-dimensional Klein-Gordon and Dirac equation with linear confining po
We study generalized Misner-Sharp energy in $f(R)$ gravity in a spherically symmetric spacetime. We find that unlike the cases of Einstein gravity and Gauss-Bonnet gravity, the existence of the generalized Misner-Sharp energy depends on a constraint